Tesis
Um estudo sobre a resolução de sistemas não lineares : perspectivas teóricas e aplicações
A study about solving non-linear systems : theoretical perspectives and applications
Registro en:
Autor
Santos, Tiara Martini dos, 1988-
Institución
Resumen
Orientador: José Mario Martínez Pérez Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica Resumo: O objetivo deste trabalho é estudar e analisar diferentes abordagens para resolver sistemas não lineares. Em primeiro lugar, uma versão esparsa do método de Newton é aplicada para encontrar uma solução do problema de complementaridade horizontal não linear (HNCP) associado a uma solução viável do problema de programação matemática com restrições de complementaridade (MPCC). O algoritmo combina direções do tipo Newton e Gradientes Projetados com um procedimento de busca linear que garante convergência global a um ponto estacionário da função de mérito associada a este problema. Convergência local quadrática é estabelecida sob hipóteses razoáveis. Experiência numérica em problemas teste de uma coleção bem conhecida ilustra a eficiência do algoritmo para encontrar soluções viáveis de MPCC na prática. Em seguida, uma estratégia quase-Newton para acelerar a convergência de iterações de ponto fixo é analisada. Para isso, atualizações secantes clássicas são consideradas. Experimentos numéricos em um conjunto treino são desenvolvidos, a fim de validar esta estratégia. Posteriormente, a estratégia quase-Newton é aplicada ao problema prático de representar o comportamento cinético de um marcador PET (Tomografia por Emissão de Pósitrons) durante a perfusão cardíaca. O desempenho do método quando aplicado a problemas com dados reais é ilustrado numericamente. Finalmente, um método híbrido que combina direções de Newton e Homotopia é introduzido para resolver problemas onde o método de Newton apresenta dificuldades. Experimentos iniciais constituem uma base para validação da técnica apresentada Abstract: The aim of this work is to study and analyse different approaches for solving nonlinear systems. First of all, a sparse version of Newton's method is applied for finding a solution of a horizontal nonlinear complementarity problem (HNCP) associated to a feasible solution of a mathematical programming problem with complementarity constraints (MPCC). The algorithm combines Newton-like and Projected-Gradient directions with a line-search procedure that guarantees global convergence to a stationary point of the merit function associated to this problem. Local quadratic convergence is stated under reasonable hypothesis. Numerical experience on test problems from a well-known collection illustrates the efficiency of the algorithm to find feasible solutions of MPCC in practice. Next, a quasi-Newton strategy for accelerating the convergence of fixed-point iterations is analysed. For that, classical secant updates are considered. Numerical experiments on a training set are developed in order to validate this strategy. After that, the quasi-Newton strategy is applied on the practical problem of represent the kinetic behavior of a PET (Positron Emission Tomography) tracer during cardiac perfusion. The performance of the method when applied to real data problems is illustrated numerically. Finally, a hybrid method combining Newton and Homotopy directions is introduced for solving problems where Newton's method presented difficulties. Initial experiments provide a basis for the presented technic validation Doutorado Matematica Aplicada Doutora em Matemática Aplicada 2012/10444-0 FAPESP CAPES