dc.creatorNatali F.
dc.creatorPastor A.
dc.creatorCristófani F.
dc.date2016
dc.date2017-08-17T19:17:59Z
dc.date2017-08-17T19:17:59Z
dc.date.accessioned2018-03-29T05:27:47Z
dc.date.available2018-03-29T05:27:47Z
dc.identifierJournal Of Differential Equations. Academic Press Inc., v. 263, n. 5, p. 2630 - 2660, 2016.
dc.identifier0022-0396
dc.identifier10.1016/j.jde.2017.04.004
dc.identifierhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85017542376&doi=10.1016%2fj.jde.2017.04.004&partnerID=40&md5=df025e9fd39c4a26620de9927460f9e7
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/324249
dc.identifier2-s2.0-85017542376
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1358412
dc.descriptionIn this paper we establish the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. Our motivation is inspired in the recent work , in which the authors established the well-posedness and the linear stability of Gaussian solitary waves. By using the approach put forward recently in to construct a smooth branch of periodic waves as well as to get the spectral properties of the associated linearized operator, we apply the abstract theories in and to deduce the orbital stability of the periodic traveling waves in the energy space. © 2017 Elsevier Inc.
dc.description263
dc.description5
dc.description2630
dc.description2660
dc.languageEnglish
dc.publisherAcademic Press Inc.
dc.relationJournal of Differential Equations
dc.rightsfechado
dc.sourceScopus
dc.subjectLog-kdv Equation
dc.subjectOrbital Stability
dc.subjectPeriodic Waves
dc.titleOrbital Stability Of Periodic Traveling-wave Solutions For The Log-kdv Equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución