dc.creatorArias N.B.
dc.creatorFranco J.F.
dc.creatorLavorato M.
dc.creatorRomero R.
dc.date2017
dc.date2017-08-17T19:17:30Z
dc.date2017-08-17T19:17:30Z
dc.date.accessioned2018-03-29T05:27:03Z
dc.date.available2018-03-29T05:27:03Z
dc.identifierElectric Power Systems Research. Elsevier Ltd, v. 142, p. 351 - 361, 2017.
dc.identifier0378-7796
dc.identifier10.1016/j.epsr.2016.09.018
dc.identifierhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84992166058&doi=10.1016%2fj.epsr.2016.09.018&partnerID=40&md5=0bb2dfa7c54e065cd093a2d43454c664
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/324077
dc.identifier2-s2.0-84992166058
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1358240
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThis paper proposes three metaheuristic optimization techniques to solve the plug-in electric vehicle (PEV) charging coordination problem in electrical distribution systems (EDSs). Optimization algorithms based on tabu search, greedy randomized adaptive search procedure, and a novel hybrid optimization algorithm are developed with the objective of minimizing the total operational costs of the EDS, considering the impact of charging the electric vehicle batteries during a specific time period. The proposed methodologies determine a charging schedule for the electric vehicle batteries considering priorities according to the PEV owners charging preferences. A 449-node system with two distributed generation units was used to demonstrate the efficiency of the proposed methodologies, taking into account different PEV penetration levels. The results show that the charging schedule found makes the economic operation of the EDS possible, while satisfying operational and priority constraints. © 2016 Elsevier B.V.
dc.description142
dc.description351
dc.description361
dc.descriptionCAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.descriptionCNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.descriptionFAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageEnglish
dc.publisherElsevier Ltd
dc.relationElectric Power Systems Research
dc.rightsfechado
dc.sourceScopus
dc.subjectElectrical Distribution System
dc.subjectHybrid Algorithm
dc.subjectMetaheuristic
dc.subjectPlug-in Electric Vehicle Charging Coordination
dc.titleMetaheuristic Optimization Algorithms For The Optimal Coordination Of Plug-in Electric Vehicle Charging In Distribution Systems With Distributed Generation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución