dc.creatorDe Almeida M.F.
dc.creatorFerreira L.C.F.
dc.date2017
dc.date2017-08-17T19:14:53Z
dc.date2017-08-17T19:14:53Z
dc.date.accessioned2018-03-29T05:21:18Z
dc.date.available2018-03-29T05:21:18Z
dc.identifierAnalysis And Pde. Mathematical Sciences Publishers, v. 10, n. 2, p. 423 - 438, 2017.
dc.identifier2157-5045
dc.identifier10.2140/apde.2017.10.423
dc.identifierhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85014707663&doi=10.2140%2fapde.2017.10.423&partnerID=40&md5=3271ee4288fb78fe47908e4de9aa14a6
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/323595
dc.identifier2-s2.0-85014707663
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1357758
dc.descriptionWe show time-weighted estimates in Lorentz spaces for the linear wave equation with singular potential. As a consequence, assuming radial symmetry on initial data and potentials, we obtain well-posedness of global solutions in critical weak-Lp spaces for semilinear wave equations. In particular, we can consider the Hardy potential V(x) = c|x|-2 for small |c|. Self-similar solutions are obtained for potentials and initial data with the right homogeneity. Our approach relies on performing estimates in the predual of weak-Lp, i.e., the Lorentz space L(p',1). © 2017 Mathematical Sciences Publishers.
dc.description10
dc.description2
dc.description423
dc.description438
dc.languageEnglish
dc.publisherMathematical Sciences Publishers
dc.relationAnalysis and PDE
dc.rightsfechado
dc.sourceScopus
dc.subjectLorentz Spaces
dc.subjectRadial Symmetry
dc.subjectSelf-similarity
dc.subjectSingular Potentials
dc.subjectWave Equations
dc.titleTime-weighted Estimates In Lorentz Spaces And Self-similarity For Wave Equations With Singular Potentials
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución