dc.creatorCardell S.D.
dc.creatorCliment J.-J.
dc.date2017
dc.date2017-08-17T19:14:04Z
dc.date2017-08-17T19:14:04Z
dc.date.accessioned2018-03-29T05:20:20Z
dc.date.available2018-03-29T05:20:20Z
dc.identifierLinear And Multilinear Algebra. Taylor And Francis Ltd., p. 1 - 8, 2017.
dc.identifier0308-1087
dc.identifier10.1080/03081087.2016.1275507
dc.identifierhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85009232045&doi=10.1080%2f03081087.2016.1275507&partnerID=40&md5=0699bde5c660ecbbd471a68f4a471a39
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/323424
dc.identifier2-s2.0-85009232045
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1357587
dc.descriptionIn this work, a new construction based on companion matrices of primitive polynomials is provided. Given two primitive polynomials over the finite fields (Formula presented.) and (Formula presented.), we construct a ring isomorphism that transforms the companion matrix of the primitive polynomial over (Formula presented.) into a matrix with elements in (Formula presented.) whose characteristic polynomial is another primitive polynomial over (Formula presented.). © 2017 Informa UK Limited, trading as Taylor & Francis Group
dc.description1
dc.description8
dc.languageEnglish
dc.publisherTaylor and Francis Ltd.
dc.relationLinear and Multilinear Algebra
dc.rightsfechado
dc.sourceScopus
dc.subjectCompanion Matrix
dc.subjectFinite Field
dc.subjectPrimitive Polynomial
dc.subjectRing Isomorphism
dc.titleA Construction Of Primitive Polynomials Over Finite Fields
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución