Tesis
Estudos funcionais e estruturais da proteina humana hnRNP Q/NSAP1
Funcional and structural studies of human protein hnRNPQ
Registro en:
(Broch.)
Autor
Quaresma, Alexandre Jose Christino
Institución
Resumen
Orientador: Jorg Kobarg Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia Resumo: Os membros da família de proteínas chamada hnRNPs (heterogenous nuclear ribonuclein proteins) apresentam importantes papeis no controle da expressão gênica e no metabolismo dos mRNAs. Os membros hnRNPD (AUF1) e hnRNPQ (NSAP1) foram alvos deste estudo. AUF1 apresenta dois domínios de ligação à RNA do tipo RRM (RNA recognition motif) e participa ativamente no processo de desestabilização de uma classe de mRNAs que apresentam um motivo rico em AU na região 3' não traduzida. Demonstramos, através do sistema de duplo híbrido em levedura, que a isoforma p37 de AUF1 interagiu com as proteínas hnRNPQ, IMP-2, NSEP1 (YB-1) e UBC9. Além disso, a proteína hnRNPQ também foi pescada num outro ensaio de duplo híbrido em levedura, que utilizou como isca a proteína humana arginina metiltransferase (PRMT1). hnRNPQ apresenta, na sua região Cterminal, um ¿motivo rico em argininas e glicinas¿ (RGG box). Demonstramos que ela é alvo de metilação pela PRMT1 in vitro e in vivo. Funcionalmente, sua metilação é importante para sua localização nuclear. NSAP1 têm uma constituição modular com um domínio ácido (AcD) no seu Nterminal, seguido por três domínios de ligação à RNA do tipo RRM e o já mencionado RGG box no seu C-terminal. Funcionalmente hnRNPQ está envolvido em vários aspectos do etabolismo de RNA, incluindo a edição do mRNA da proteína humana ApoB. Para isso, ela interage não somente com o mRNA de ApoB, mas com a enzima efetora da edição Apobec1 e com a proteína que ativadora do Apobec1 (ACF1). Mostramos que o domínio ácido, de NSAP1 é capaz de interagir com Apobec1 e que sua fosforilação in vitro pela PKC inibe esta interação. Ainda identificamos que hnRNPQ interage com proteínas da família heat shock (incluindo HSP70 e BiP), e vimos que hnRNPQ é um alvo de fosforilação principalmente pela PKCd, in vitro. A localização sub-celular de hnRNPQ é modificada pela ativação in vivo das PKCs. Em conseqüência desta ativação ou da aplicação de estresse oxidativo, térmico ou indução de estresse do reticulo endoplasmático (tratamento com tapsigargina) hnRNPQ se desloca do núcleo para o citoplasma aonde se encontra em vesículas/corpúsculos definidas. Em resumo, nossos dados sugerem que as diversas funções da hnRNPQ relacionadas ao metabolismo de mRNAs, sofrem diferentes regulações, mediadas por modificações pós-traducionais (fosforilação e metilação), que interferem tanto na sua localização celular quanto na sua afinidade por determinados proteínas parceiras Abstract: The members of the hnRNPs family (heterogenous nuclear ribonuclein proteins) play important roles in gene expression control and mRNAs metabolism. The proteins hnRNPD (AUF1) and hnRNPQ (NSAP1) were the main targets of this study. AUF1 has two RNA recognition motifs (RRM) and participates in the process of destabilization of a class of mRNAs that contain AU-rich sequences in their 3' untranslated regions (3'-UTR). We found, using the ¿yeast two-hybrid system¿ (Y2HS), that the isoform p37 of AUF1 (AUF1p37) interacts with the proteins: hnRNPQ, IMP-2, NSEP1 (YB-1) and UBC9. Moreover, the protein hnRNPQ was also identified as a prey protein in another Y2HS screen, which used as bait the human protein Arginine methyltransferase (PRMT1). HnRNPQ presents, in its C-terminal region, an "Arginine/Glicine-rich sequence" (RGG box). We are able to show that this RGG box is a target for methylation by PRMT1 in vitro and is methylated in vivo. Functionally, this methylation is important for its nuclear localization. hnRNPQ has a modular organization with an acid domain (AcD) in its N-terminal, followed by three RNA-binding domains (RRM) and the previously mentioned RGG box in its C-terminal. Functionally, hnRNPQ is involved in diverse aspects of RNA metabolism, including editing of the mRNA encoding the human protein ApoB. It has been shown previously to interact with the mRNA of ApoB, and also with the editing enzyme Apobec1 and the Apobec1 activation protein (ACF1). Here we show that the acid domain of hnRNPQ mediates the interaction with Apobec1 and that its in vitro phosphorylation (by PKC) inhibits this interaction. Furthermore, we found that hnRNPQ interacts with members the heat shock family of proteins (including HSP70 and BiP), and demonstrated that hnRNPQ can be in vitro phosphorylated by PKCd. Finally, we discovered that the sub-cellular localization of hnRNPQ undergoes modification after activation of PKC pathways. This also occurs after application of endoplasmic reticulum stress (using tarpsigargin), oxidative or heat stress. Under all of these conditions hnRNPQ translocated from the nucleus to the cytoplasm, where it is found at defined vesicles or granules. In summary, our data suggest that the diverse functions of hnRNPQ in the context of mRNA metabolism, may suffer specific regulations, by post-translational modifications, including phosphorylation and methylation, which modify both the proteins sub-cellular localizations as well as its affinity to interacting protein partners Doutorado Bioquimica Doutor em Biologia Funcional e Molecular