Tesis
Métodos para problemas mal-postos discretos de grande porte
Methods for large-scale discrete ill-posed problems
Registro en:
Autor
Borges, Leonardo Silveira, 1983-
Institución
Resumen
Orientadores: Maria Cristina de Castro Cunha, Fermín Sinforiano Viloche Bazán Tese (doutorado) - Universidade Estadual de Campionas, Instituto de Matemática, Estatística e Computação Científica Resumo: A resolução estável de problemas mal-postos discretos requer o uso de métodos de regularização. Dentre vários métodos de regularização existentes na literatura, um dos mais utilizados é o método de regularização de Tikhonovçuja eficiência depende da escolha do parâmetro de regularização. Existem vários métodos para selecionar um parâmetro apropriado tais como o princípio da discrepância de Morozov e métodos heurísticos como o critério da curva-L de Hansen, a Validação Cruzada Generalizada de Golub, Heath e Wahba e o método de ponto fixo de Bazán. Problemas mal-postos discretos de grande porte podem ser resolvidos por métodos iterativos como CGLS e LSQR desde que as iterações sejam interrompidas antes que a influência do ruído deteriore a qualidade das iteradas. Esta é uma tarefa difícil que ainda não foi abordada satisfatoriamente na literatura. Em uma tentativa de atenuar a dificuldade na escolha da iteração de parada, tais métodos podem ser combinados com o método de regularização de Tikhonov gerando os métodos híbridos como GKB-FP e W-GCV (ambos usam a matriz identidade como matriz de regularização). As contribuições desta tese incluem primeiramente novas informações referentes ao algoritmo GKB-FP e como este pode ser eficientemente implementado para o método de regularização de Tikhonov com a matriz de regularização sendo diferente da matriz identidade. Como segunda contribuição tem-se o desenvolvimento de um critério de parada automático para métodos iterativos para problemas "de grande porte", incluindo meios para incorporar informações a priori da solução (como regularidade, por exemplo) no processo iterativo. O método de regularização de Tikhonov usualmente está confinado apenas a um único parâmetro. Entretanto, alguns problemas apresentam soluções com distintas características que devem ser incorporadas na solução regularizada. Isso conduz ao método de regularização de Tikhonov com múltiplos parâmetros. A terceira contribuição desta tese é o desenvolvimento de um método baseado em iterações de ponto fixo para a seleção destes parâmetros e um algoritmo do tipo GKB-FP para problemas de grande porte. Por fim, os resultados teóricos obtidos nesta pesquisa são avaliados na construção de soluções numéricas para diversos problemas como restauração e super-resolução de imagens, problemas de espalhamento e outros obtidos de equações integrais de Fredholm Abstract: Discrete ill-posed problems need to be regularized in order to be stably solved. Amongst several regularization methods, perhaps the most used is the method of Tikhonov whose effectiveness depends on a proper choice of the regularization parameter. There are considerable amount of parameter choice rules in the literature; these include the Discrepancy Principle by Morozov and heuristic methods like the L-curve criterion by Hansen, Generalized Cross Validation by Golub, Heath and Wahba, and a fixed point method due to Bazán. Large-scale discrete ill-posed problems can be solved by iterative methods like CGLS and LSQR provided that the iterations are stopped before the noise starts deteriorating the quality of the iterates. This is a difficult task which has not yet been addressed satisfactorily in the literature. In an attempt to alleviate the difficulty associated with selecting the regularization parameter, iterative methods can be combined with Tikhonov regularization giving rise to the so-called hybrid methods such as GKB-FP and W-GCV (both using the identity matrix as regularization matrix). The contributions of this thesis include further results concerning the theoretical properties of GKB-FP algorithm as well as the extension of GKB-FP to Tikhonov regularization using a general regularization matrix. Apart from this, as a second contribution, we propose an automatic stopping rule for iterative methods for large-scale problems, including the case where the methods are preconditioned via smoothing norms. Tikhonov regularization has been widely applied to solve linear ill-posed problems, but almost always confined to a single regularization parameter. Nevertheless, some problems have solutions with distinctive characteristics that must be included in the regularized solution. This leads to multi-parameter Tikhonov regularization problems. The third contribution of the thesis is the development of a fixed point method to select the regularization parameters in this multi-parameter case as well as a GKB-FP type algorithm which is well suited for large-scale problems. The proposed algorithms are numerically illustrated by solving several problems such as reconstruction and super-resolution image problems, scattering problems and others from Fredholm integral equations Doutorado Matematica Aplicada Doutor em Matemática Aplicada