Periodic orbits in dynamical systems

dc.creatorRoberto, Luci Any Francisco
dc.date2008
dc.date2008-03-17T00:00:00Z
dc.date2017-03-29T20:09:31Z
dc.date2017-06-21T18:38:18Z
dc.date2017-03-29T20:09:31Z
dc.date2017-06-21T18:38:18Z
dc.date.accessioned2018-03-29T03:00:46Z
dc.date.available2018-03-29T03:00:46Z
dc.identifier(Broch.)
dc.identifierROBERTO, Luci Any Francisco. Orbitas periodicas em sistemas mecanicos. 2008. 80p. Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica, Campinas, SP. Disponível em: <http://libdigi.unicamp.br/document/?code=vtls000432981>. Acesso em: 29 mar. 2017.
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/305987
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1324781
dc.descriptionOrientador: Marco Antonio Teixeira
dc.descriptionTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
dc.descriptionResumo: Neste trabalho estudamos sistemas dinâmicos possuindo estruturas Hamiltonianas e reversíveis(
dc.descriptionAbstract: In this work we study dynamical systems possessing Hamiltonian and time-reversible structures. The reversibility concept is de¯ned in terms of an involution. Initially we discuss the dynamics of Hamiltonian vector ¯elds with 2 and 3 degrees of freedom around an elliptic equilibrium in the presence of an involution which preserves the symplectic structure. The main results discuss the existence of one-parameter families of reversible periodic solutions terminating at the equilibrium. The main techniques that are used in the proofs are Belitskii and Birkho® normal forms and the Liapunov-Schmidt Reduction. Next we consider a case of the 3-body restricted problem in rotating coordinates. In this case the two primaries are oving in an elliptic collision orbit. By the continuation method of Poincare we characterize that the periodic circular orbits and the symmetric periodic elliptic orbits from the Kepler problem which can be prolonged to pseudo periodic orbits of the planar restricted 3{body problem in rotating coordinates with the two primaries moving in an elliptic collision orbit
dc.descriptionDoutorado
dc.descriptionTopologia e Geometria
dc.descriptionDoutor em Matematica
dc.format80p. : il.
dc.formatapplication/pdf
dc.languagePortuguês
dc.publisher[s.n.]
dc.subjectÓrbitas periódicas
dc.subjectSistemas hamiltonianos
dc.subjectFormas normais (Matemática)
dc.subjectCampos vetoriais
dc.subjectPeriodic orbits
dc.subjectHamiltonian systems
dc.subjectNormal forms (Mathematics)
dc.subjectVector fields
dc.titleOrbitas periodicas em sistemas mecanicos
dc.titlePeriodic orbits in dynamical systems
dc.typeTesis


Este ítem pertenece a la siguiente institución