Tesis
Um estudo de reticulados q-ários com a métrica da soma
A study of q-ary lattices with the sum metric
Registro en:
Autor
Tsuchiya, Luciana Yoshie, 1977-
Institución
Resumen
Orientador: Sueli Irene Rodrigues Costa Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica. Resumo: Reticulados no 'R^n' são conjuntos discretos de pontos gerados como combinações inteiras de vetores linearmente independentes. A estrutura e as propriedades de reticulados vêm sendo exploradas em diversas áreas, dentre elas a Teoria da Informação. Neste trabalho fizemos um estudo de reticulados q-ários na métrica da soma, os quais estão relacionados aos códigos q-ários. Iniciamos com o estudo de reticulados gerais abordando questões como, densidade de empacotamento, determinação da região de Voronoi, equivalência de reticulados e processos de decodificação, fazendo um paralelo destas questões na métrica euclidiana e na métrica da soma. Em seguida, no Capitulo 2, tratamos brevemente os conceitos de códigos corretores de erros, onde os códigos q-ários estão inseridos e códigos lineares definidos sobre corpos finitos. No estudo dos códigos q-ários consideramos a distancia de Lee que e uma alternativa a usual métrica de Hamming. Por fim, no Capitulo 3, abordamos os reticulados q-ários que são obtidos a partir de códigos q-ários pelo processo conhecido como Construção A. Estudamos uma forma de se decodificar um reticulado q-ário via a Construção A, usando a decodificação do código e vice-versa e discutimos um algoritmo de decodificação (Lee Sphere Decoding) para reticulados q-ários que possuem matriz geradora de formato especial Abstract: Lattices in 'R^n' are discrete sets of points generated as integer combinations of linearly independent vectors. The structure and properties of lattices have been explored in several areas, including Information Theory. In this work, we study q-ary lattices which are obtained from q-ary codes in the sum metric. We begin the study of general lattices, approaching topics as packing density, Voronoi regions, lattice equivalence and decoding processes, considering both the Euclidean and sum metric. In Chapter 2, we introduce some error correcting codes concepts focusing on q-ary codes and the more general class of linear codes defined over finite fields. In the study of q-ary codes, we consider the Lee distance, as an extension and alternative to the usual Hamming metric. Finally, in Chapter 3, we approach the q-ary latt ices, which are obtained from q-ary codes via the so called Construction A. We study a q-ary lattice decoding process, relate it to the associate code decoding and discuss a decoding algorithm for lattices which have special generator matrices Mestrado Matematica Mestre em Matemática