Tesis
Sobre derivações localmente nilpotentes dos aneis K[x,y,z] e K[x,y]
Over locally nilpotent derivations of the rings K[x,y,z] e K[x,y]
Registro en:
(Broch.)
Autor
Diaz Noguera, Maribel del Carmen
Institución
Resumen
Orientador: Paulo Roberto Brumatti Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Ciencia da Computação Resumo: O principal objetivo desta dissertação é apresentar resultados centrais sobre derivações localmente nilpotentes no anel de polinômios B = k[x1, ..., xn], para n = 3 que foram apresentados por Daniel Daigle em [2 ], [3] e [4] .Para este propósito, introduziremos os conceitos básicos e fundamentais da teoria das derivações num anel e apresentaremos resultados em relação a derivações localmente nilpotentes num domínio de característica zero e de fatorização única. Entre tais resultados está a fórmula Jacobiana que usaremos para descrever o conjunto das derivações equivalentes e localmente nilpotentes de B = k[x, y, z] e o conjunto LND(B), com B = k[x,y]. Também, explicítam-se condições equivalentes para a existência de uma derivação ?-homogênea e localmente nilpotente de B = k[x, y, z] com núcleo k[¿, g], onde {¿}, {g} e B, mdc(?) = mdc(?(¿), ? (g)) = 1 Abstract: In this dissertation we present centraIs results on locally nilpotents derivations in a ring of polynomials B = k[x1, ..., xn], for n = 3, which were presented by Daniel Daigle in [2], [3] and [4]. For this, we introduce basic fundamenta1 results of the theory of derivations in a ring and we present results on locally nilpotents derivations in a domain with characteristic zero and unique factorization. One of these results is the Jacobian forrnula that we use to describe the set of the equivalent loca11y nilpotents derivations of B = k[x, y, z] and the set LND(B) where B = k[x, y]. Moreover, we give equivalent conditions to the existence of a ?-homogeneous locally nilpotent derivation in the ring B = k[x, y, z] with kernel k[¿, g], {¿} and {g} e B, and mdc(?) = mdc(?(¿), ? (g)) = 1 Mestrado Algebra Mestre em Matematica