Tesis
Integrais de trajetória na representação de estados coerentes
Integrals in the coherent state representation
Registro en:
(Broch.)
Autor
Santos, Luis Coelho dos
Institución
Resumen
Orientador: Marcus Aloizio Martinez de Aguiar Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin Resumo: A supercompleteza da base de estados coerentes gera uma multiplicidade de representações da integral de trajetória de Feynman. Estas diferentes representações, embora equivalentes quanticamente, levam a diferentes limites semiclássicos. Baranger et al calcularam o limite semiclássico de duas formas para a integral de trajetória, sugeridas por Klauder e Skagerstam. Cada uma destas fórmulas envolve trajetórias governadas por uma diferente representação clássica do operador Hamiltoniano: a representação P em um caso e a representação Q no outro. Nesta tese, nós construímos outras duas representações da integral de trajetória, cujos limites semiclássicos envolvem diretamente a representação de Weyl do operador Hamiltoniano, isto é, a própria Hamiltoniana classica. Mostramos que, no limite semiclássico, a dinâmica na representação de Weyl é independente da largura dos estados coerentes e o propagador é também livre das correções de fase encontradas em todos os outros casos. Além disto, fornecemos uma conexão explícita entre as representações quânticas de Weyl e de Husimi no espaço de fases Abstract: The overcompleteness of the coherent states basis gives rise to a multiplicity of representations of Feynman¿s path integral. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. Baranger et al derived the semiclassical limit of two path integral forms suggested by Klauder and Skagerstam. Each of these formulas involve trajectories governed by a different classical representation of the Hamiltonian operator: the P representation in one case and the Q representation in the other one. In this thesis we construct two other representations of the path integral whose semiclassical limit involves directly the Weyl representation of the Hamiltonian operator, i.e., the classical Hamiltonian itself. We show that, in the semiclassical limit, the dynamics in the Weyl representation is independent of the coherent states width and that the propagator is also free from the phase corrections found in all the other cases. Besides, we obtain an explicit connection between the Weyl and the Husimi phase space representations of quantum mechanics Doutorado Física Clássica e Física Quântica ; Mecânica e Campos Doutor em Ciencias