Segmentação interativa de múltiplos objetos 3D em imagens médicas por cortes ótimos em grafo

dc.creatorMoya, Nikolas, 1991-
dc.date2015
dc.date2015-12-03T00:00:00Z
dc.date2017-04-02T18:12:22Z
dc.date2017-06-09T15:07:31Z
dc.date2017-04-02T18:12:22Z
dc.date2017-06-09T15:07:31Z
dc.date.accessioned2018-03-29T02:19:51Z
dc.date.available2018-03-29T02:19:51Z
dc.identifierMOYA, Nikolas. Interactive segmentation of multiple 3D objects in medical images by optimum graph cuts = Segmentação interativa de múltiplos objetos 3D em imagens médicas por cortes ótimos em grafo. 2015. 71 f. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em: <http://www.bibliotecadigital.unicamp.br/document/?code=000951355>. Acesso em: 2 abr. 2017.
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/275554
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1314281
dc.descriptionOrientador: Alexandre Xavier Falcão
dc.descriptionDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
dc.descriptionResumo: Segmentação de imagens médicas é crucial para extrair medidas de objetos 3D (estruturas anatômicas) que são úteis no diagnóstico e tratamento de doenças. Nestas aplicações, segmentação interativa é necessária quando métodos automáticos falham ou não são factíveis. Métodos por corte em grafo são considerados o estado da arte em segmentação interativa, mas diversas abordagens utilizam o algoritmo min-cut/max-flow, que é limitado à segmentação binária, sendo que segmentação de múltiplos objetos pode economizar tempo e esforço do usuário. Este trabalho revisita a transformada imagem floresta diferencial (DIFT, em inglês) -- uma abordagem por corte em grafo adequada para segmentação de múltiplos objetos -- resolvendo problemas relacionados a ela. O algoritmo da DIFT executa em tempo proporcional ao número de voxels nas regiões modificadas em cada execução da segmentação (sublinear). Tal característica é altamente desejável em segmentação interativa de imagens 3D para responder as ações do usuário em tempo real. O algoritmo da DIFT funciona da seguinte forma: o usuário desenha marcadores (traço com voxels de semente) rotulados dentro de cada objeto e o fundo, enquanto o computador interpreta a imagem como um grafo, cujos nós são os voxels e os arcos são definidos por pixels vizinhos, produzindo como resultado uma floresta de caminhos ótimos (partição na imagem) enraizada nos nós sementes do grafo. Nesta floresta, cada objeto é representado pela floresta de caminhos ótimos enraizado em suas sementes internas. Tais árvores são pintadas com a mesmo cor associada ao rótulo do marcador correspondente. Ao adicionar ou remover marcadores, é possível corrigir a segmentação até o mapa de rótulo de objeto representar o resultado desejado. Para garantir consistência na segmentação, métodos baseados em semente sempre devem manter a conectividade entre os voxels e suas sementes. Entretanto, isto não é mantido em algumas abordagens, como Random Walkers ou quando o mapa de rótulos é filtrado para suavizar a fronteira dos objetos. Esta conectividade é primordial para realizar correções sem recomeçar o processo depois de cada intervenção do usuário. Todavia, foi observado que a DIFT falha em manter consistência da segmentação em alguns casos. Consertamos este problema tanto no algoritmo da DIFT, quanto após a suavização dos objetos. Estes resultados comparam diversas estruturas anatômicas 3D de imagens de ressonância magnética e tomografia computadorizada
dc.descriptionAbstract: Medical image segmentation is crucial to extract measures from 3D objects (body anatomical structures) that are useful for diagnosis and treatment of diseases. In such applications, interactive segmentation is necessary whenever automated methods fail or are not feasible. Graph-cut methods are considered the state of the art in interactive segmentation, but most approaches rely on the min-cut/max-flow algorithm, which is limited to binary segmentation while multi-object segmentation can considerably save user time and effort. This work revisits the differential image foresting transform (DIFT) ¿ a graph-cut approach suitable for multi-object segmentation in linear time ¿ and solves several problems related to it. Indeed, the DIFT algorithm can take time proportional to the number of voxels in the regions modified at each segmentation execution (sublinear time). Such a characteristic is highly desirable in 3D interactive segmentation to respond the user's actions as close as possible to real time. Segmentation using the DIFT works as follows: the user draws labeled markers (strokes of connected seed voxels) inside each object and background, while the computer interprets the image as a graph, whose nodes are the voxels and arcs are defined by neighboring voxels, and outputs an optimum-path forest (image partition) rooted at the seed nodes in the graph. In the forest, each object is represented by the optimum-path trees rooted at its internal seeds. Such trees are painted with same color associated to the label of the corresponding marker. By adding/removing markers, the user can correct segmentation until the forest (its object label map) represents the desired result. For the sake of consistency in segmentation, similar seed-based methods should always maintain the connectivity between voxels and seeds that have labeled them. However, this does not hold in some approaches, such as random walkers, or when the segmentation is filtered to smooth object boundaries. That connectivity is also paramount to make corrections without starting over the process at each user intervention. However, we observed that the DIFT algorithm fails in maintaining segmentation consistency in some cases. We have fixed this problem in the DIFT algorithm and when the obtained object boundaries are smoothed. These results are presented and evaluated on several 3D body anatomical structures from MR and CT images
dc.descriptionMestrado
dc.descriptionCiência da Computação
dc.descriptionMestre em Ciência da Computação
dc.format71 f. : il.
dc.formatapplication/octet-stream
dc.publisher[s.n.]
dc.subjectProcessamento de imagens
dc.subjectSegmentação de imagens
dc.subjectCorte de grafos
dc.subjectSegmentação de imagens médicas
dc.subjectSegmentação de múltiplos objetos
dc.subjectImage processing
dc.subjectImage segmentation
dc.subjectCut graphs
dc.subjectMedical image segmentation
dc.subjectMulti-object segmentation
dc.titleInteractive segmentation of multiple 3D objects in medical images by optimum graph cuts = Segmentação interativa de múltiplos objetos 3D em imagens médicas por cortes ótimos em grafo
dc.titleSegmentação interativa de múltiplos objetos 3D em imagens médicas por cortes ótimos em grafo
dc.typeTesis


Este ítem pertenece a la siguiente institución