dc.creatorSilva
dc.creatorJMDE; Hanchuk
dc.creatorTDM; Santos
dc.creatorMI; Kobarg
dc.creatorJ; Bajgelman
dc.creatorMC; Cardoso
dc.creatorMB
dc.date2016
dc.date2016-12-06T18:32:18Z
dc.date2016-12-06T18:32:18Z
dc.date.accessioned2018-03-29T02:04:54Z
dc.date.available2018-03-29T02:04:54Z
dc.identifier
dc.identifierAcs Applied Materials & Interfaces. AMER CHEMICAL SOC, n. 8, n. 26, p. 16564 - 16572.
dc.identifier1944-8244
dc.identifierWOS:000379456000005
dc.identifier10.1021/acsami.6b03342
dc.identifierhttp://pubs.acs.org/doi/abs/10.1021/acsami.6b03342
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/320504
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1311270
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionVaccines and therapies are not available for several diseases caused by viruses, thus viral infections result in morbidity and mortality of millions of people every year. Nanoparticles are considered to be potentially effective in inhibiting viral infections. However, critical issues related to their use include their toxicity and their mechanisms of antiviral action, which are not yet completely elucidated. To tackle these problems, we synthesized silica nanoparticles with distinct surface properties and evaluated their biocompatibility and antiviral efficacy. We show that nanoparticles exhibited no significant toxicity to mammalian cells, while declines up to 50% in the viral transduction ability of two distinct recombinant viruses were observed. We designed experiments to address the mechanism of antiviral action of our nanoparticles and found that their hydrophobic/hydrophilic characters play a crucial role. Our results reveal that the use of functionalized silica particles is a promising approach for controlling viral infection and offer promising strategies for viral control.
dc.description8
dc.description
dc.description16564
dc.description16572
dc.descriptionFAPESP [2014/22322-2, 2012/05481-4, 2013/12190-9]
dc.descriptionLNLS
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description
dc.description
dc.description
dc.languageEnglish
dc.publisherAMER CHEMICAL SOC
dc.publisherWASHINGTON
dc.relationACS Applied Materials & Interfaces
dc.rightsfechado
dc.sourceWOS
dc.subjectSilica Nanoparticles
dc.subjectVirus
dc.subjectHiv
dc.subjectVsv-g
dc.subjectAntiviral
dc.subjectViral Inhibition Mechanism
dc.titleViral Inhibition Mechanism Mediated By Surface-modified Silica Nanoparticles
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución