dc.creatorCarnielli
dc.creatorW; Coniglio
dc.creatorME
dc.date2016
dc.date2016-12-06T18:30:48Z
dc.date2016-12-06T18:30:48Z
dc.date.accessioned2018-03-29T02:03:23Z
dc.date.available2018-03-29T02:03:23Z
dc.identifier1465-363X
dc.identifierJournal Of Logic And Computation. OXFORD UNIV PRESS, n. 26, n. 1, p. 97 - 116.
dc.identifier0955-792X
dc.identifierWOS:000374223700005
dc.identifier10.1093/logcom/ext020
dc.identifierhttp://logcom-oxfordjournals-org.ez88.periodicos.capes.gov.br/content/26/1/97
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/320127
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1310893
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThis article intends to contribute to the debate about the uses of paraconsistent reasoning in the foundations of set theory, by means of using the logics of formal inconsistency and by considering consistent and inconsistent sentences, as well as consistent and inconsistent sets. We establish the basis for new paraconsistent set-theories (such as ZFmbC and ZFCil) under this perspective and establish their non-triviality, provided that ZF is consistent. By recalling how George Cantor himself, in his efforts towards founding set theory more than a century ago, not only used a form of 'inconsistent sets' in his mathematical reasoning, but regarded contradictions as beneficial, we argue that Cantor's handling of inconsistent collections can be related to ours.
dc.description26
dc.description
dc.description97
dc.description116
dc.descriptionFAPESP (Thematic Project LogCons, Brazil) [2010/51038-0]
dc.descriptionNational Council for Scientific and Technological Development (CNPq), Brazil
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description
dc.description
dc.description
dc.languageEnglish
dc.publisherOXFORD UNIV PRESS
dc.publisherOXFORD
dc.relationJournal of Logic and Computation
dc.rightsfechado
dc.sourceWOS
dc.subjectFoundations Of Set Theory
dc.subjectParaconsistent Set Theory
dc.subjectCantor's Set Theory
dc.subjectRussell's Paradox
dc.subjectLogics Of Formal Inconsistency
dc.titleParaconsistent Set Theory By Predicating On Consistency
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución