dc.creatorOgawa
dc.creatorES; Matos
dc.creatorAO; Beline
dc.creatorT; Marques
dc.creatorISV; Sukotjo
dc.creatorC; Mathew
dc.creatorMT; Rangel
dc.creatorEC; Cruz
dc.creatorNC; Mesquita
dc.creatorMF; Consani
dc.creatorRX; Barao
dc.creatorVAR
dc.date2016
dc.date2016-12-06T18:30:43Z
dc.date2016-12-06T18:30:43Z
dc.date.accessioned2018-03-29T02:03:17Z
dc.date.available2018-03-29T02:03:17Z
dc.identifier1873-0191
dc.identifierMaterials Science And Engineering: C. ELSEVIER SCIENCE BV, n. 65, p. 251 - 261.
dc.identifier0928-4931
dc.identifierWOS:000376833200030
dc.identifier10.1016/j.msec.2016.04.036
dc.identifierhttp://www-sciencedirect-com.ez88.periodicos.capes.gov.br/science/article/pii/S0928493116303344
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/320102
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1310868
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionModified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M-control); etched with HCl + H2O2 (Cl), H2SO4 + H2O2 (5); sandblasted with Al2O3 (Sb), Al2O3 followed by HCl + H2O2 (SbCl), and Al2O3 followed by H2SO4 + H2O2 (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF-pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R-p) and the lowest capacitance (Q) and corrosion current density (I-corr) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R-p values of cp-Ti surfaces and produced the highest I-corr values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. (C) 2016 Elsevier B.V. All rights reserved.
dc.description65
dc.description
dc.description251
dc.description261
dc.descriptionState of Sao Paulo Research Foundation (FAPESP) [2013/24112-2, 2013/08451-1]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description
dc.description
dc.description
dc.languageEnglish
dc.publisherELSEVIER SCIENCE BV
dc.publisherAMSTERDAM
dc.relationMaterials Science and Engineering: C
dc.rightsfechado
dc.sourceWOS
dc.subjectTitanium
dc.subjectCorrosion
dc.subjectElectrochemistry
dc.subjectElectrochemical Impedance Spectroscopy
dc.subjectDental Implant
dc.subjectX-ray Diffraction
dc.titleSurface-treated Commercially Pure Titanium For Biomedical Applications: Electrochemical, Structural, Mechanical And Chemical Characterizations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución