dc.creatorZambom
dc.creatorAZ; Collazos
dc.creatorJAA; Dias
dc.creatorR
dc.date2016
dc.date2016-12-06T18:30:39Z
dc.date2016-12-06T18:30:39Z
dc.date.accessioned2018-03-29T02:03:13Z
dc.date.available2018-03-29T02:03:13Z
dc.identifier1573-2916
dc.identifierJournal Of Global Optimization. SPRINGER, n. 64, n. 4, p. 803 - 823.
dc.identifier0925-5001
dc.identifierWOS:000373017300011
dc.identifier10.1007/s10898-015-0353-9
dc.identifierhttp://link-springer-com.ez88.periodicos.capes.gov.br/article/10.1007%2Fs10898-015-0353-9
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/320089
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1310855
dc.descriptionIn real-time trajectory planning for unmanned vehicles, on-board sensors, radars and other instruments are used to collect information on possible obstacles to be avoided and pathways to be followed. Since, in practice, observations of the sensors have measurement errors, the stochasticity of the data has to be incorporated into the models. In this paper, we consider using a genetic algorithm for the constrained optimization problem of finding the trajectory with minimum length between two locations, avoiding the obstacles on the way. To incorporate the variability of the sensor readings, we propose a modified genetic algorithm, addressing the stochasticity of the feasible regions. In this way, the probability that a possible solution in the search space, say x, is feasible can be derived from the random observations of obstacles and pathways, creating a real-time data learning algorithm. By building a confidence region from the observed data such that its border intersects with the solution point x, the level of the confidence region defines the probability that x is feasible. We propose using a smooth penalty function based on the Gaussian distribution, facilitating the borders of the feasible regions to be reached by the algorithm.
dc.description64
dc.description803
dc.description823
dc.description11th International Symposium on Generalized Convexity and Monotonicity
dc.descriptionAUG 25-30, 2014
dc.descriptionIMPA, Rio de Janeiro, BRAZIL
dc.languageEnglish
dc.publisherSPRINGER
dc.publisherDORDRECHT
dc.relationJournal of Global Optimization
dc.rightsfechado
dc.sourceWOS
dc.subjectConstrained Optimization
dc.subjectStochastic Feasible Regions
dc.subjectPenalty Function
dc.subjectAutonomous Vehicle
dc.subjectNonparametric Curve Estimation
dc.titleConstrained Optimization With Stochastic Feasibility Regions Applied To Vehicle Path Planning
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución