dc.creatorFiscella
dc.creatorA
dc.date2016
dc.date2016-12-06T18:30:34Z
dc.date2016-12-06T18:30:34Z
dc.date.accessioned2018-03-29T02:03:07Z
dc.date.available2018-03-29T02:03:07Z
dc.identifier
dc.identifierDifferential And Integral Equations. KHAYYAM PUBL CO INC, n. 29, n. 5-6, p. 513 - 530.
dc.identifier0893-4983
dc.identifierWOS:000373748100006
dc.identifier
dc.identifierhttps://projecteuclid.org/euclid.die/1457536889
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/320062
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1310828
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionIn this paper, we deal with a Kirchhoff type problem driven by a nonlocal fractional integrodifferential operator L-K, that is, -M(parallel to u parallel to(2))LKu = lambda f(x, u) [integral(Omega) F(x, u(x))d(x)](r) + vertical bar u vertical bar(2*-2)u in Omega, u = 0 in R-n \ Omega, where Omega is an open bounded subset of R-n, M and f are continuous functions, parallel to center dot parallel to is a functional norm, F(x, u(x)) = integral(0) (u(x)) f(x, tau)d tau, 2* is a fractional Sobolev exponent, lambda and r are real parameters. For this problem, we prove the existence of infinitely many solutions, through a suitable truncation argument and exploiting the genus theory introduced by Krasnoselskii.
dc.description29
dc.description
dc.description513
dc.description530
dc.descriptionCoordenagdo de Aperfeiconamento de pessoal de nivel superior through fellowship PNPD [CAPES 33003017003P5]
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description
dc.description
dc.description
dc.languageEnglish
dc.publisherKHAYYAM PUBL CO INC
dc.publisherATHENS
dc.relationDifferential and Integral Equations
dc.rightsfechado
dc.sourceWOS
dc.subjectEquation
dc.subjectMultiplicity
dc.subjectLaplacian
dc.subjectExponent
dc.titleInfinitely Many Solutions For A Critical Kirchhoff Type Problem Involving A Fractional Operator
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución