dc.creatorMederos
dc.creatorM; Mestanza
dc.creatorSNM; Lang
dc.creatorR; Doi
dc.creatorI; Diniz
dc.creatorJA
dc.date2016
dc.date2016-12-06T18:29:35Z
dc.date2016-12-06T18:29:35Z
dc.date.accessioned2018-03-29T02:02:06Z
dc.date.available2018-03-29T02:02:06Z
dc.identifier
dc.identifierThin Solid Films. ELSEVIER SCIENCE SA, n. 611, p. 39 - 45.
dc.identifier0040-6090
dc.identifierWOS:000377933200007
dc.identifier10.1016/j.tsf.2016.05.026
dc.identifierhttp://www-sciencedirect-com.ez88.periodicos.capes.gov.br/science/article/pii/S0040609016301778
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/319810
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1310576
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionIn the present work, circular Metal-Oxide-Semiconductor capacitors with 200 mu m of diameter and germanium (Ge) nanoparticles (NPs) embedded in the gate oxide are studied for memory applications. Optimal process parameters are investigated for Ge NPs growing by low pressure chemical vapor deposition at different deposition times. Photoluminescence measurements showed room-temperature size-dependent green-red region bands attributed to quantum confinement effects present in the NPs. High-frequency capacitance versus voltage measurements demonstrated the memory effects on the MOS structures due to the presence of Ge NPs in the gate oxide acting as discrete floating gates. Current versus voltage measurements confirmed the Fowler-Nordheim tunneling as the programming mechanism of the devices. (C) 2016 Elsevier B.V. All rights reserved.
dc.description611
dc.description
dc.description39
dc.description45
dc.descriptionCoordination for the Improvement of Higher Education Personnel (CAPES) from Brazil
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description
dc.description
dc.description
dc.languageEnglish
dc.publisherELSEVIER SCIENCE SA
dc.publisherLAUSANNE
dc.relationThin Solid Films
dc.rightsfechado
dc.sourceWOS
dc.subjectGermanium Nanoparticles
dc.subjectMetal-oxide-semiconductor Structure
dc.subjectNonvolatile Memory
dc.subjectLow-pressure Chemical Vapor Deposition
dc.subjectFowler-nordheim Tunneling
dc.titleGermanium Nanoparticles Grown At Different Deposition Times For Memory Device Applications
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución