Artículos de revistas
Fat-specific Dicer Deficiency Accelerates Aging And Mitigates Several Effects Of Dietary Restriction In Mice
Registro en:
Aging. Impact Journals Llc, v. 8, p. 1201 - 1222, 2016.
19454589
10.18632/aging.100970
2-s2.0-84977532338
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branchedchain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. 8
1201 1222 2010/52557-0, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)