dc.date2016
dc.date2016-12-06T17:44:19Z
dc.date2016-12-06T17:44:19Z
dc.date.accessioned2018-03-29T02:01:05Z
dc.date.available2018-03-29T02:01:05Z
dc.identifier
dc.identifierPhysical Review Letters. American Physical Society, v. 116, p. , 2016.
dc.identifier00319007
dc.identifier10.1103/PhysRevLett.116.147802
dc.identifierhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84963713698&partnerID=40&md5=a9f6316a230b7923cd703c1cf390a93d
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/319541
dc.identifier2-s2.0-84963713698
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1310309
dc.descriptionSmectic liquid crystals are remarkable, beautiful examples of materials microstructure, with ordered patterns of geometrically perfect ellipses and hyperbolas. The solution of the complex problem of filling three-dimensional space with domains of focal conics under constraining boundary conditions yields a set of strict rules, which are similar to the compatibility conditions in a martensitic crystal. Here we present the rules giving compatible conditions for the concentric circle domains found at two-dimensional smectic interfaces with planar boundary conditions. Using configurations generated by numerical simulations, we develop a clustering algorithm to decompose the planar boundaries into domains. The interfaces between different domains agree well with the smectic compatibility conditions. We also discuss generalizations of our approach to describe the full three-dimensional smectic domains, where the variant symmetry group is the Weyl-Poincaré group of Lorentz boosts, translations, rotations, and dilatations. © 2016 American Physical Society.
dc.description116
dc.description
dc.description
dc.description
dc.description
dc.description
dc.languageen
dc.publisherAmerican Physical Society
dc.relationPhysical Review Letters
dc.rightsaberto
dc.sourceScopus
dc.titleWeirdest Martensite: Smectic Liquid Crystal Microstructure And Weyl-poincaré Invariance
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución