Artículos de revistas
Numerical Solution Of Acoustic Scattering By Finite Perforated Elastic Plates
Registro en:
Proceedings Of The Royal Society A: Mathematical, Physical And Engineering Sciences. Royal Society Of London, v. 472, p. , 2016.
13645021
10.1098/rspa.2015.0767
2-s2.0-84968662183
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates. © 2016 The Author(s) Published by the Royal Society. All rights reserved. 472
2013/03413-4, FAPESP, São Paulo Research Foundation 2014/05671-3, FAPESP, São Paulo Research Foundation Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)