dc.date2016
dc.date2016-12-06T17:43:24Z
dc.date2016-12-06T17:43:24Z
dc.date.accessioned2018-03-29T02:00:12Z
dc.date.available2018-03-29T02:00:12Z
dc.identifier
dc.identifierJournal Of Cellular Automata. Old City Publishing, v. 11, p. 195 - 211, 2016.
dc.identifier15575969
dc.identifier
dc.identifierhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84962897529&partnerID=40&md5=d7e7e35a8614c04ed1a738ebbf958927
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/319299
dc.identifier2-s2.0-84962897529
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1310067
dc.descriptionThe self-shrinking generator is a non-linear cryptographic sequence generator designed to be used in stream cipher applications. In this work, its output sequence, the self-shrunken sequence, is computed as one of the output sequences of a linear model based on Cellular Automata. Such Automata are uniform, null, one-dimensional and use rules 102 or 60 for their computations. The linearity of these structures can be advantageous exploited to recover the complete selfshrunken sequence from a number of intercepted bits. Indeed, a Cellular Automata-based reconstruction procedure that is deterministic, does not need the knowledge of the LFSR characteristic polynomial and is performed exclusively by means of XOR operations has been proposed. © 2016 Old City Publishing, Inc.
dc.description11
dc.description
dc.description195
dc.description211
dc.description
dc.description
dc.languageen
dc.publisherOld City Publishing
dc.relationJournal of Cellular Automata
dc.rightsfechado
dc.sourceScopus
dc.titleLinear Models For The Self-shrinking Generator Based On Ca
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución