dc.creatorZagonel, L. F.
dc.creatorBettini, J.
dc.creatorBasso, R. L. O.
dc.creatorParedez, P.
dc.creatorPinto, H.
dc.creatorLepienski, C. M.
dc.creatorAlvarez, F.
dc.date2012
dc.date2016-07-01T14:11:01Z
dc.date2016-07-01T14:11:01Z
dc.date.accessioned2018-03-29T01:54:12Z
dc.date.available2018-03-29T01:54:12Z
dc.identifierSurface & Coatings Technology. Elsevier, v.207, p.72-78, 2012
dc.identifier0257-8972
dc.identifierWOS:000309501600010
dc.identifier10.1016/j.surfcoat.2012.05.081
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/1929
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/304676
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1308537
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionA comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400 degrees C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about similar to 43 mu m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure. (c) 2012 Elsevier B.V. All rights reserved.
dc.description207
dc.description72
dc.description78
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionDFG project [444Bra-113/25/0-1]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageeng
dc.publisherElsevier
dc.publisherLausanne
dc.relationSurface & Coatings Technology
dc.rightsfechado
dc.sourceWOS
dc.subjectPlasma nitriding
dc.subjectNanosized precipitates
dc.subjectNitrogen diffusion
dc.subjectHR-TEM
dc.subjectTool steel
dc.subjectSurface hardness
dc.subjectIMMERSION ION-IMPLANTATION
dc.subjectAUSTENITIC STAINLESS-STEEL
dc.subjectIRON-CHROMIUM ALLOYS
dc.subjectHIGH-SPEED STEEL
dc.subjectEXCESS NITROGEN
dc.subjectCOMPOUND LAYER
dc.subjectAISI-H13 STEEL
dc.subjectELECTRON-SPECTROSCOPY
dc.subjectCORROSION-RESISTANCE
dc.subjectFERRITE MATRIX
dc.titleNanosized precipitates in H13 tool steel low temperature plasma nitriding
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución