dc.creatorPaiva, Jose Gustavo S.
dc.creatorSchwartz, William Robson
dc.creatorPedrini, Helio
dc.creatorMinghim, Rosane
dc.date2012
dc.date2013-09-19T18:06:56Z
dc.date2016-06-30T18:10:29Z
dc.date2013-09-19T18:06:56Z
dc.date2016-06-30T18:10:29Z
dc.date.accessioned2018-03-29T01:52:55Z
dc.date.available2018-03-29T01:52:55Z
dc.identifierComputer Graphics Forum. Wiley-Blackwell, v.31, n.3, p.1345-1354, 2012
dc.identifier0167-7055
dc.identifierWOS:000305604000010
dc.identifier10.1111/j.1467-8659.2012.03126.x
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/2514
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/2514
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1308274
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionDimensionality reduction is employed for visual data analysis as a way to obtaining reduced spaces for high dimensional data or to mapping data directly into 2D or 3D spaces. Although techniques have evolved to improve data segregation on reduced or visual spaces, they have limited capabilities for adjusting the results according to user's knowledge. In this paper, we propose a novel approach to handling both dimensionality reduction and visualization of high dimensional data, taking into account user's input. It employs Partial Least Squares (PLS), a statistical tool to perform retrieval of latent spaces focusing on the discriminability of the data. The method employs a training set for building a highly precise model that can then be applied to a much larger data set very effectively. The reduced data set can be exhibited using various existing visualization techniques. The training data is important to code user's knowledge into the loop. However, this work also devises a strategy for calculating PLS reduced spaces when no training data is available. The approach produces increasingly precise visual mappings as the user feeds back his or her knowledge and is capable of working with small and unbalanced training sets.
dc.description31
dc.description3
dc.description1345
dc.description1354
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionBrazilian financial agency FAPESP
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageeng
dc.publisherWiley-Blackwell
dc.publisherHoboken
dc.relationComputer Graphics Forum
dc.rightsfechado
dc.sourceWOS
dc.subjectMULTIDIMENSIONAL PROJECTION
dc.subjectVARIABLE SELECTION
dc.subjectREGRESSION
dc.subjectCLASSIFICATION
dc.subjectSIMILARITY
dc.titleSemi-Supervised Dimensionality Reduction based on Partial Least Squares for Visual Analysis of High Dimensional Data
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución