dc.creatorFernandes
dc.creatorCristina G.; Hernandez-Velez
dc.creatorCesar; Lee
dc.creatorOrlando; de Pina
dc.creatorJose C.
dc.date2016-Jan
dc.date2016-06-07T13:35:25Z
dc.date2016-06-07T13:35:25Z
dc.date.accessioned2018-03-29T01:50:58Z
dc.date.available2018-03-29T01:50:58Z
dc.identifier
dc.identifierSpanning Trees With Nonseparating Paths. Elsevier Science Bv, v. 339, p. 365-374 Jan-2016.
dc.identifier0012-365X
dc.identifierWOS:000364265000039
dc.identifier10.1016/j.disc.2015.08.020
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0012365X15003052
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/244127
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1307825
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionWe consider questions related to the existence of spanning trees in connected graphs with the property that, after the removal of any path in the tree, the graph remains connected. We show that, for planar graphs, the existence of trees with this property is closely related to the Hamiltonicity of the graph. For graphs with a 1- or 2-vertex cut, the Hamiltonicity also plays a central role. We also deal with spanning trees satisfying this property restricted to paths arising from fundamental cycles. The cycle space of a graph can be generated by the fundamental cycles of every spanning tree, and Tutte showed that, for a 3-connected graph, it can be generated by nonseparating cycles. We are also interested in the existence of a fundamental basis consisting of nonseparating cycles. (C) 2015 Elsevier B.V. All rights reserved.
dc.description339
dc.description1
dc.description
dc.description365
dc.description374
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCNPq [308523/2012-1]
dc.descriptionFAPESP [2012/24597-3]
dc.descriptionCNPq [303947/2008-0]
dc.descriptionCNPq [477692/2012-5]
dc.description
dc.description
dc.description
dc.languageen
dc.publisherELSEVIER SCIENCE BV
dc.publisher
dc.publisherAMSTERDAM
dc.relationDISCRETE MATHEMATICS
dc.rightsembargo
dc.sourceWOS
dc.subjectNon-separating Subgraphs
dc.subjectGraphs
dc.titleSpanning Trees With Nonseparating Paths
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución