dc.creatorNatali
dc.creatorFabio; Pastor
dc.creatorAdemir
dc.date2015-AUG
dc.date2016-06-07T13:34:28Z
dc.date2016-06-07T13:34:28Z
dc.date.accessioned2018-03-29T01:50:08Z
dc.date.available2018-03-29T01:50:08Z
dc.identifier
dc.identifierOrbital Instability Of Standing Waves For The Quadratic-cubic Klein-gordon-schrodinger System. Springer Basel Ag, v. 66, p. 1341-1354 AUG-2015.
dc.identifier0044-2275
dc.identifierWOS:000359383000004
dc.identifier10.1007/s00033-014-0467-9
dc.identifierhttp://link.springer.com/article/10.1007%2Fs00033-014-0467-9
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/243928
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1307626
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionWe consider the Klein-Gordon-Schrodinger system with quadratic and cubic interactions. Smooth curves of periodic- and solitary-wave solutions are obtained via the implicit function theorem. Orbital instability of such waves is then established.
dc.description66
dc.description4
dc.description
dc.description1341
dc.description1354
dc.descriptionFundacao Araucaria/Parana/Brazil
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description
dc.description
dc.description
dc.languageen
dc.publisherSPRINGER BASEL AG
dc.publisher
dc.publisherBASEL
dc.relationZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK
dc.rightsfechado
dc.sourceWOS
dc.subjectSolitary Waves
dc.subjectStability Theory
dc.subjectPeriodic-waves
dc.subjectGround-states
dc.subjectEquations
dc.titleOrbital Instability Of Standing Waves For The Quadratic-cubic Klein-gordon-schrodinger System
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución