Artículos de revistas
On Z(2)-graded Identities Of Ut2(e) And Their Growth
Registro en:
On Z(2)-graded Identities Of Ut2(e) And Their Growth. Elsevier Science Inc, v. 471, p. 469-499 APR-2015.
0024-3795
WOS:000350918400029
10.1016/j.laa.2014.12.035
Autor
Centrone
Lucio; Tomaz da Silva
Viviane Ribeiro
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Let F be an infinite field of characteristic different from two and E be the infinite dimensional Grassmann algebra over F. We consider the upper triangular matrix algebra UT2(E) with entries in E endowed with the Z(2)-grading inherited by the natural Z(2)-grading of E and we study its ideal of Z(2)-graded polynomial identities (T-Z2-ideal) and its relatively free algebra. In particular we show that the set of Z(2)-graded polynomial identities of UT2(E) does not depend on the characteristic of the field. Moreover we compute the Z(2)-graded Hilbert series of UT2(E) and its Z(2)-graded Gelfand-Kirillov dimension. (C) 2015 Elsevier Inc. All rights reserved. 471
469 499 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) "Para mulheres na Ciencia" (L'oreal/Academia Brasileira de Ciencias/UNESCO) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) FAPESP [2013/06752-4] CNPq [305339/2013-3]