dc.creator | Bueno | |
dc.creator | L. F.; Haeser | |
dc.creator | G.; Martinez | |
dc.creator | J. M. | |
dc.date | 2015-APR | |
dc.date | 2016-06-07T13:32:31Z | |
dc.date | 2016-06-07T13:32:31Z | |
dc.date.accessioned | 2018-03-29T01:48:17Z | |
dc.date.available | 2018-03-29T01:48:17Z | |
dc.identifier | | |
dc.identifier | A Flexible Inexact-restoration Method For Constrained Optimization. Springer/plenum Publishers, v. 165, p. 188-208 APR-2015. | |
dc.identifier | 0022-3239 | |
dc.identifier | WOS:000352114400009 | |
dc.identifier | 10.1007/s10957-014-0572-0 | |
dc.identifier | http://link.springer.com/article/10.1007%2Fs10957-014-0572-0 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/243472 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1307170 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | We introduce a new flexible inexact-restoration algorithm for constrained optimization problems. In inexact-restoration methods, each iteration has two phases. The first phase aims at improving feasibility and the second phase aims to minimize a suitable objective function. In the second phase, we also impose bounded deterioration of the feasibility, obtained in the first phase. Here, we combine the basic ideas of the Fischer-Friedlander approach for inexact-restoration with the use of approximations of the Lagrange multipliers. We present a new option to obtain a range of search directions in the optimization phase, and we employ the sharp Lagrangian as merit function. Furthermore, we introduce a flexible way to handle sufficient decrease requirements and an efficient way to deal with the penalty parameter. Global convergence of the new inexact-restoration method to KKT points is proved under weak constraint qualifications. | |
dc.description | 165 | |
dc.description | 1 | |
dc.description | | |
dc.description | 188 | |
dc.description | 208 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | CNPq [E-26/171.164/2003 - APQ1] | |
dc.description | FAPESP [2010/19720-5, 2013/05475-7] | |
dc.description | FAPESP [201307375-0] | |
dc.description | | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | SPRINGER/PLENUM PUBLISHERS | |
dc.publisher | | |
dc.publisher | NEW YORK | |
dc.relation | JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS | |
dc.rights | fechado | |
dc.source | WOS | |
dc.subject | Spectral Projected Gradient | |
dc.subject | Modified Subgradient Algorithm | |
dc.subject | Linear-dependence Condition | |
dc.subject | Local Convergence | |
dc.subject | Merit Function | |
dc.subject | Convex-sets | |
dc.subject | Discretization | |
dc.subject | Qualifications | |
dc.subject | Minimization | |
dc.subject | Optimality | |
dc.title | A Flexible Inexact-restoration Method For Constrained Optimization | |
dc.type | Artículos de revistas | |