dc.creatorBueno
dc.creatorL. F.; Haeser
dc.creatorG.; Martinez
dc.creatorJ. M.
dc.date2015-APR
dc.date2016-06-07T13:32:31Z
dc.date2016-06-07T13:32:31Z
dc.date.accessioned2018-03-29T01:48:17Z
dc.date.available2018-03-29T01:48:17Z
dc.identifier
dc.identifierA Flexible Inexact-restoration Method For Constrained Optimization. Springer/plenum Publishers, v. 165, p. 188-208 APR-2015.
dc.identifier0022-3239
dc.identifierWOS:000352114400009
dc.identifier10.1007/s10957-014-0572-0
dc.identifierhttp://link.springer.com/article/10.1007%2Fs10957-014-0572-0
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/243472
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1307170
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionWe introduce a new flexible inexact-restoration algorithm for constrained optimization problems. In inexact-restoration methods, each iteration has two phases. The first phase aims at improving feasibility and the second phase aims to minimize a suitable objective function. In the second phase, we also impose bounded deterioration of the feasibility, obtained in the first phase. Here, we combine the basic ideas of the Fischer-Friedlander approach for inexact-restoration with the use of approximations of the Lagrange multipliers. We present a new option to obtain a range of search directions in the optimization phase, and we employ the sharp Lagrangian as merit function. Furthermore, we introduce a flexible way to handle sufficient decrease requirements and an efficient way to deal with the penalty parameter. Global convergence of the new inexact-restoration method to KKT points is proved under weak constraint qualifications.
dc.description165
dc.description1
dc.description
dc.description188
dc.description208
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCNPq [E-26/171.164/2003 - APQ1]
dc.descriptionFAPESP [2010/19720-5, 2013/05475-7]
dc.descriptionFAPESP [201307375-0]
dc.description
dc.description
dc.description
dc.languageen
dc.publisherSPRINGER/PLENUM PUBLISHERS
dc.publisher
dc.publisherNEW YORK
dc.relationJOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
dc.rightsfechado
dc.sourceWOS
dc.subjectSpectral Projected Gradient
dc.subjectModified Subgradient Algorithm
dc.subjectLinear-dependence Condition
dc.subjectLocal Convergence
dc.subjectMerit Function
dc.subjectConvex-sets
dc.subjectDiscretization
dc.subjectQualifications
dc.subjectMinimization
dc.subjectOptimality
dc.titleA Flexible Inexact-restoration Method For Constrained Optimization
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución