dc.creator | Fujiwara | |
dc.creator | Eric; Marques Dos Santos | |
dc.creator | Murilo Ferreira; Schenkel | |
dc.creator | Egont Alexandre; Ono | |
dc.creator | Eduardo; Suzuki | |
dc.creator | Carlos Kenichi | |
dc.date | 2015-SEP | |
dc.date | 2016-06-07T13:21:35Z | |
dc.date | 2016-06-07T13:21:35Z | |
dc.date.accessioned | 2018-03-29T01:41:23Z | |
dc.date.available | 2018-03-29T01:41:23Z | |
dc.identifier | | |
dc.identifier | Optical Classification Of Quartz Lascas By Artificial Neural Networks. Taylor & Francis Inc, v. 36, p. 281-287 SEP-2015. | |
dc.identifier | 0882-7508 | |
dc.identifier | WOS:000354545800001 | |
dc.identifier | 10.1080/08827508.2014.978315 | |
dc.identifier | http://www.tandfonline.com/doi/pdf/10.1080/08827508.2014.978315 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/243093 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1306791 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description | A gradation method based on quartz lascas (lumps) transparency level is proposed. The samples were irradiated by transmitting light, and the images histograms were processed by artificial neural networks. Additionally, the results were compared to conventional classification methods, including density and visual analysis. The network designed with backpropagation architecture using 4 hidden layers of 10 neurons yielded to a relative error <24% in relation to manual classification, indicating a good agreement to the miners criteria. Furthermore, the implementation of competitive learning with 5 neurons resulted in correct discrimination of samples regarding their optical characteristics with a completely non-subjective approach. | |
dc.description | 36 | |
dc.description | 5 | |
dc.description | | |
dc.description | 281 | |
dc.description | 287 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description | | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | TAYLOR & FRANCIS INC | |
dc.publisher | | |
dc.publisher | PHILADELPHIA | |
dc.relation | MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW | |
dc.rights | embargo | |
dc.source | WOS | |
dc.subject | Metallurgy & Metallurgical Engineering | |
dc.subject | Mining & Mineral Processing | |
dc.title | Optical Classification Of Quartz Lascas By Artificial Neural Networks | |
dc.type | Artículos de revistas | |