dc.creatorCalle
dc.creatorJorge L. Diaz; Devloo
dc.creatorPhilippe R. B.; Gomes
dc.creatorSonia M.
dc.date2015-SEP
dc.date2016-06-07T13:20:34Z
dc.date2016-06-07T13:20:34Z
dc.date.accessioned2018-03-29T01:40:34Z
dc.date.available2018-03-29T01:40:34Z
dc.identifier
dc.identifierImplementation Of Continuous Hp-adaptive Finite Element Spaces Without Limitations On Hanging Sides And Distribution Of Approximation Orders. Pergamon-elsevier Science Ltd, v. 70, p. 1051-1069 SEP-2015.
dc.identifier0898-1221
dc.identifierWOS:000361073800024
dc.identifier10.1016/j.camwa.2015.06.033
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0898122115003193
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/242916
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1306614
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionAdaptive techniques using hp refinement are known to be one of the most efficient methodologies to accelerate the convergence of finite element algorithms. However, the implementation of computational tools for the development of hp-adaptive algorithms is intricate and depends strongly on the data structure. There exist few computational environments available to the scientific finite element community capable to implement hp-adaptive approximation spaces for the complete family of finite element topologies, and which implement hanging sides. This article describes a methodology for the development of continuous hp-adaptive finite element approximation spaces, without constraints on the refinement strategy concerning the difference of levels and approximation orders between neighboring elements. The shape functions are hierarchical, and the coefficient constraints associated with hanging sides that can occur in non-conformal geometric meshes are defined using L-2-projections. The topological and functional aspects of the construction are described in one, two and three dimensions, for a variety of geometric entities (line, triangle, quadrilateral, tetrahedron, pyramid, prism, and hexahedron). The implementation is demonstrated in the object-oriented scientific computational environment NeoPZ (http://github.com/labmec/neopz). NeoPZ is a general finite element approximation software, which incorporates a variety of variational formulations. Validation of the refinement methodology is demonstrated by two and three dimensional numerical experiments. () 2015 Elsevier Ltd. All rights reserved.
dc.description70
dc.description5
dc.description
dc.description1051
dc.description1069
dc.descriptionBrazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP-PETROBRAS)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description
dc.description
dc.description
dc.languageen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.publisher
dc.publisherOXFORD
dc.relationCOMPUTERS & MATHEMATICS WITH APPLICATIONS
dc.rightsembargo
dc.sourceWOS
dc.subjectStrategy
dc.titleImplementation Of Continuous Hp-adaptive Finite Element Spaces Without Limitations On Hanging Sides And Distribution Of Approximation Orders
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución