dc.creatorde Carvalho-Neto
dc.creatorPaulo Mendes; Planas
dc.creatorGabriela
dc.date2015-OCT
dc.date2016-06-07T13:20:18Z
dc.date2016-06-07T13:20:18Z
dc.date.accessioned2018-03-29T01:40:22Z
dc.date.available2018-03-29T01:40:22Z
dc.identifier
dc.identifierMild Solutions To The Time Fractional Navier-stokes Equations In R-n. Academic Press Inc Elsevier Science, v. 259, p. 2948-2980 OCT-2015.
dc.identifier0022-0396
dc.identifierWOS:000357903500014
dc.identifier10.1016/j.jde.2015.04.008
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0022039615001977
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/242867
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1306565
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThis paper addresses the existence and uniqueness of mild solutions to the Navier-Stokes equations with time fractional differential operator of order alpha is an element of (0, 1). Several interesting properties about the solution are also highlighted, like regularity and decay rate in Lebesgue spaces, which will depend on the fractional exponent alpha. Moreover, it is shown that the L-P-exponent range, which the solution belongs to, is different from the range for the solution of the classical problem with alpha = 1. (C) 2015 Elsevier Inc. All rights reserved.
dc.description259
dc.description7
dc.description
dc.description2948
dc.description2980
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFAPESP [2013/00594-8]
dc.descriptionCNPq [302865/2012-8]
dc.description
dc.description
dc.description
dc.languageen
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.publisher
dc.publisherSAN DIEGO
dc.relationJOURNAL OF DIFFERENTIAL EQUATIONS
dc.rightsembargo
dc.sourceWOS
dc.subjectWeak Solutions
dc.subjectDifferential-equations
dc.subjectCauchy-problems
dc.subjectL2 Decay
dc.subjectDerivatives
dc.subjectCalculus
dc.subjectBehavior
dc.subjectOperator
dc.subjectLp
dc.titleMild Solutions To The Time Fractional Navier-stokes Equations In R-n
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución