dc.creator | de Carvalho-Neto | |
dc.creator | Paulo Mendes; Planas | |
dc.creator | Gabriela | |
dc.date | 2015-OCT | |
dc.date | 2016-06-07T13:20:18Z | |
dc.date | 2016-06-07T13:20:18Z | |
dc.date.accessioned | 2018-03-29T01:40:22Z | |
dc.date.available | 2018-03-29T01:40:22Z | |
dc.identifier | | |
dc.identifier | Mild Solutions To The Time Fractional Navier-stokes Equations In R-n. Academic Press Inc Elsevier Science, v. 259, p. 2948-2980 OCT-2015. | |
dc.identifier | 0022-0396 | |
dc.identifier | WOS:000357903500014 | |
dc.identifier | 10.1016/j.jde.2015.04.008 | |
dc.identifier | http://www.sciencedirect.com/science/article/pii/S0022039615001977 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/242867 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1306565 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | This paper addresses the existence and uniqueness of mild solutions to the Navier-Stokes equations with time fractional differential operator of order alpha is an element of (0, 1). Several interesting properties about the solution are also highlighted, like regularity and decay rate in Lebesgue spaces, which will depend on the fractional exponent alpha. Moreover, it is shown that the L-P-exponent range, which the solution belongs to, is different from the range for the solution of the classical problem with alpha = 1. (C) 2015 Elsevier Inc. All rights reserved. | |
dc.description | 259 | |
dc.description | 7 | |
dc.description | | |
dc.description | 2948 | |
dc.description | 2980 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | FAPESP [2013/00594-8] | |
dc.description | CNPq [302865/2012-8] | |
dc.description | | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.publisher | | |
dc.publisher | SAN DIEGO | |
dc.relation | JOURNAL OF DIFFERENTIAL EQUATIONS | |
dc.rights | embargo | |
dc.source | WOS | |
dc.subject | Weak Solutions | |
dc.subject | Differential-equations | |
dc.subject | Cauchy-problems | |
dc.subject | L2 Decay | |
dc.subject | Derivatives | |
dc.subject | Calculus | |
dc.subject | Behavior | |
dc.subject | Operator | |
dc.subject | Lp | |
dc.title | Mild Solutions To The Time Fractional Navier-stokes Equations In R-n | |
dc.type | Artículos de revistas | |