dc.creator | Ferreira | |
dc.creator | Lucas C. F.; Mesquita | |
dc.creator | Claudia Aline A. S. | |
dc.date | 2015-OCT | |
dc.date | 2016-06-07T13:19:33Z | |
dc.date | 2016-06-07T13:19:33Z | |
dc.date.accessioned | 2018-03-29T01:39:44Z | |
dc.date.available | 2018-03-29T01:39:44Z | |
dc.identifier | | |
dc.identifier | An Approach Without Using Hardy Inequality For The Linear Heat Equation With Singular Potential. World Scientific Publ Co Pte Ltd, v. 17, p. OCT-2015. | |
dc.identifier | 0219-1997 | |
dc.identifier | WOS:000362560100013 | |
dc.identifier | 10.1142/S0219199715500418 | |
dc.identifier | http://www.worldscientific.com/doi/10.1142/S0219199715500418 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/242715 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1306413 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | The aim of this paper is to employ a strategy known from fluid dynamics in order to provide results for the linear heat equation u(t) - Delta u - V (x)u = 0 in R-n with singular potentials. We show well-posedness of solutions, without using Hardy inequality, in a framework based in the Fourier transform, namely, PMk-spaces. For arbitrary data u(0) is an element of PMk, the approach allows to compute an explicit smallness condition on V for global existence in the case of V with finitely many inverse square singularities. As a consequence, well-posedness of solutions is obtained for the case of the monopolar potential V (x) = lambda/vertical bar x vertical bar(2) with vertical bar lambda vertical bar < lambda(*) = (n-2)(2)/4. This threshold value is the same one obtained for the global well-posedness of L-2-solutions by means of Hardy inequalities and energy estimates. Since there is no any inclusion relation between L-2 and PMk, our results indicate that lambda(*) is intrinsic of the PDE and independent of a particular approach. We also analyze the long-time behavior of solutions and show there are infinitely many possible asymptotics characterized by the cells of a disjoint partition of the initial data class PMk. | |
dc.description | 17 | |
dc.description | 5 | |
dc.description | | |
dc.description | | |
dc.description | | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | WORLD SCIENTIFIC PUBL CO PTE LTD | |
dc.publisher | | |
dc.publisher | SINGAPORE | |
dc.relation | COMMUNICATIONS IN CONTEMPORARY MATHEMATICS | |
dc.rights | fechado | |
dc.source | WOS | |
dc.subject | Navier-stokes Equations | |
dc.subject | Self-similar Solutions | |
dc.subject | Parabolic Equations | |
dc.subject | Elliptic-equations | |
dc.subject | Schrodinger-operators | |
dc.subject | Critical Growth | |
dc.subject | Existence | |
dc.subject | Nonexistence | |
dc.subject | Stability | |
dc.subject | Term | |
dc.title | An Approach Without Using Hardy Inequality For The Linear Heat Equation With Singular Potential | |
dc.type | Artículos de revistas | |