Brasil | Artículos de revistas
dc.creatorVaishampayan
dc.creatorVinay A.; Campello
dc.creatorAntonio
dc.date2015-NOV
dc.date2016-06-07T13:19:05Z
dc.date2016-06-07T13:19:05Z
dc.date.accessioned2018-03-29T01:39:19Z
dc.date.available2018-03-29T01:39:19Z
dc.identifier
dc.identifierReliability Of Erasure Coded Storage Systems: A Combinatorial-geometric Approach. Ieee-inst Electrical Electronics Engineers Inc, v. 61, p. 5795-5809 NOV-2015.
dc.identifier0018-9448
dc.identifierWOS:000363256500004
dc.identifier10.1109/TIT.2015.2477401
dc.identifierhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7247711&tag=1
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/242619
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1306317
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionWe consider the probability of data loss, or equivalently, the reliability function for an erasure coded distributed data storage system under worst case conditions. Data loss in an erasure coded system depends on probability distributions for the disk repair duration and the disk failure duration. In previous works, the data loss probability of such systems has been studied under the assumption of exponentially distributed disk failure and disk repair durations, using well-known analytic methods from the theory of Markov processes. These methods lead to an estimate of the integral of the reliability function. Here, we address the problem of directly calculating the data loss probability for general repair and failure duration distributions. A closed limiting form is developed for the probability of data loss, and it is shown that the probability of the event that a repair duration exceeds a failure duration is sufficient for characterizing the data loss probability. For the case of constant repair duration, we develop an expression for the conditional data loss probability given the number of failures experienced by a each node in a given time window. We do so by developing a geometric approach that relies on the computation of volumes of a family of polytopes that are related to the code. An exact calculation is provided, and an upper bound on the data loss probability is obtained by posing the problem as a set avoidance problem. Theoretical calculations are compared with simulation results.
dc.description61
dc.description11
dc.description
dc.description5795
dc.description5809
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionPSC-CUNY [68631-00 46]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCNPq [400441/2014-4]
dc.descriptionFAPESP [2013/25219-5, 2014/20602-8]
dc.description
dc.description
dc.description
dc.languageen
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.publisher
dc.publisherPISCATAWAY
dc.relationIEEE TRANSACTIONS ON INFORMATION THEORY
dc.rightsfechado
dc.sourceWOS
dc.subjectComputer Science, Information Systems
dc.subjectEngineering, Electrical & Electronic
dc.titleReliability Of Erasure Coded Storage Systems: A Combinatorial-geometric Approach
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución