Brasil
| Artículos de revistas
Avd-total-colouring Of Complete Equipartite Graphs
Registro en:
Avd-total-colouring Of Complete Equipartite Graphs. Elsevier Science Bv, v. 184, p. 189-195 MAR-2015.
0166-218X
WOS:000352174700019
10.1016/j.dam.2014.11.006
Autor
Luiz
Atilio G.; Campos
C. N.; de Mello
C. P.
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) An AVD-total-colouring of a simple graph G is a mapping pi : V (G) boolean OR E(G) -> C, C a set of colours, such that: (i) for each pair of adjacent or incident elements x, y is an element of V(G) boolean OR E(G), pi (x) not equal pi (y); (ii) for each pair of adjacent vertices x, y is an element of V (G), sets {pi (x)} boolean OR {pi (xv) : xv is an element of E(G), nu is an element of V (G)} and {pi(y)} boolean OR {pi (y nu):y nu is an element of E(G), nu is an element of V(G)} are distinct. The AVD-total-chromatic number, chi(a)'' (G), is the smallest number of colours for which G admits an AVD-total-colouring. In 2005, Zhang et al. conjectured that chi(a)'' (G) <= Delta(G) + 3 for any simple graph G. In this article this conjecture is verified for any complete equipartite graph. Moreover, if G is a complete equipartite graph of even order, then it is shown that chi(a)''= Delta(G) + 2. (C) 2014 Elsevier B.V. All rights reserved. 184
189 195 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)