Artículos de revistas
Advances In Dental Materials Through Nanotechnology: Facts, Perspectives And Toxicological Aspects
Registro en:
Trends In Biotechnology. Elsevier Ltd, v. 33, n. 11, p. 621 - 636, 2015.
1677799
10.1016/j.tibtech.2015.09.005
2-s2.0-84947573745
Institución
Resumen
Nanotechnology is currently driving the dental materials industry to substantial growth, thus reflecting on improvements in materials available for oral prevention and treatment. The present review discusses new developments in nanotechnology applied to dentistry, focusing on the use of nanomaterials for improving the quality of oral care, the perspectives of research in this arena, and discussions on safety concerns regarding the use of dental nanomaterials. Details are provided on the cutting-edge properties (morphological, antibacterial, mechanical, fluorescence, antitumoral, and remineralization and regeneration potential) of polymeric, metallic and inorganic nano-based materials, as well as their use as nanocluster fillers, in nanocomposites, mouthwashes, medicines, and biomimetic dental materials. Nanotoxicological aspects, clinical applications, and perspectives for these nanomaterials are also discussed. © 2015 Elsevier Ltd. 33 11 621 636 Ghadimi, E., Regulated fracture in tooth enamel: a nanotechnological strategy from nature (2014) J. Biomech., 47, pp. 2444-2451 Bhavikatti, S.K., Current applications of nanotechnology in dentistry: a review (2014) Gen. Dent., 62, pp. 72-77 Bawa, R., Nanopharmaceuticals patenting issues and FDA regulatory challenges (2008) Sci. Tech. Lawyer, 5, pp. 1-6 Potocnik, J., Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011) Off. J. Eur. Union L, 275, pp. 38-40 (2014) Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology, , US Department of Health and Human Services, Food and Drug Administration, Office of the Commissioner Sauro, S., Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface (2012) J. Mater. Sci. Mater. Med., 23, pp. 1521-1532 Mantri, S.S., Mantri, S.P., The nano era in dentistry (2013) J. Nat. Sci. Biol. Med., 4, pp. 39-44 Antunes, A.M.S., Trends in nanotechnology patents applied to the health sector (2012) Recent Pat. Nanotechnol., 6, pp. 29-43 Luna, D.M.N., Andrade, C.A.S., Nanotechnology applied to dentistry (2011) Int. J. Dent., 10, pp. 161-168 Uskoković, V., Bertassoni, L.E., Nanotechnology in dental sciences: moving towards a finer way of doing dentistry (2010) Materials, 3, pp. 1674-1691 Kanaparthy, R., Kanaparthy, A., The changing face of dentistry: nanotechnology (2011) Int. J. Nanomed., 6, pp. 2799-2804 Tomsia, A.P., Nanotechnology approaches for better dental implantas (2011) Int. J. Oral Maxillofac. Implants, 26, pp. 25-44 Kovvuru, S.K., Nanotechnology: the emerging science in dentistry (2012) J. Orofac. Res., 2, pp. 33-36 Kumar, P., Nanotechnological impact on future clinical dental prospects: an insight (2013) Eur. J. Gen. Dent., 2, pp. 86-87 Mikkilineni, M., Nanodentistry: new buzz in dentistry (2013) Eur. J. Gen. Dent., 2, pp. 109-113 Ozak, S.T., Ozkan, P., Nanotechnology and dentistry (2013) Eur. J. Dent., 7, pp. 145-151 Lima, R., Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles (2012) J. Appl. Toxicol., 32, pp. 867-879 Marcato, P.D., Biogenic silver nanoparticles: antibacterial and cytotoxicity applied to textile fabrics (2012) J. Nano Res., 20, pp. 69-76 Duran, N., Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants (2011) Appl. Microbiol. Biotechnol., 90, pp. 1609-1624 Besinis, A., The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays (2014) Nanotoxicology, 8, pp. 1-16 Chaloupka, K., Nanosilver as a new generation of nanoproduct in biomedical applications (2010) Trends Biotechnol., 28, pp. 580-588 Radzig, M.A., Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action (2013) Colloids Surf. B: Biointerfaces, 102, pp. 300-306 Peulen, T.O., Wilkinson, K.J., Diffusion of nanoparticles in a biofilm (2011) Environ. Sci. Technol., 45, pp. 3367-3373 Abu-Lail, N.I., Camesano, T.A., Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109 (2003) Environ. Sci. Technol., 37, pp. 2173-2183 García-Contreras, R., Perspectives for the use of silver nanoparticles in dental practice (2011) Int. Dent. J., 61, pp. 297-301 Park, E.J., Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism (2010) Toxicol. In Vitro, 24, pp. 872-878 Yang, Z., A review of nanoparticle functionality and toxicity on the central nervous system (2010) J. R. Soc. Interface, 7, pp. S411-S422 Schrand, A.M., Can silver nanoparticles be useful as potential biological labels? (2008) Nanotechnology, 19, p. 235104 Hussain, S.M., In vitro toxicity of nanoparticles in BRL 3A rat liver cells (2005) Toxicol. In Vitro, 19, pp. 975-983 Arora, S., Cellular responses induced by silver nanoparticles: in vitro studies (2008) Toxicol. Lett., 179, pp. 93-100 Burd, A., A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models (2007) Wound Repair Regen., 15, pp. 94-104 Kumar, C.S.S.R., (2006) Nanomaterials: Toxicity, Health and Environmental Issues, , Wiley-VCH-Verlag, (Ed.) Hajipour, M.J., Antibacterial properties of nanoparticles (2012) Trends Biotechnol., 30, pp. 499-511 Huh, A.J., Kwon, Y.J., 'Nanoantibiotics': a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era (2011) J. Control. Release, 156, pp. 128-145 Huang, Z., Toxicological effect of ZnO nanoparticles based on bacteria (2008) Langmuir, 24, pp. 4140-4144 Srakaew, V., Sodium-phosphorylated chitosan/zinc oxide complexes and evaluation of their cytocompatibility: an approach for periodontal dressing (2012) J. Biomater. Appl., 27, pp. 403-412 Yuan, J.H., Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles (2010) Colloids Surf. B: Biointerfaces, 76, pp. 145-150 Yang, S.T., Cytotoxicity of zinc oxide nanoparticles: importance of microenvironment (2010) J. Nanosci. Nanotechnol., 10, pp. 8638-8645 Wang, Y., A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives (2014) Nanoscale, 6, pp. 15333-15342 Blecher, K., The growing role of nanotechnology in combating infectious disease (2011) Virulence, 2, pp. 395-401 Adams, L.K., Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions (2006) Water Res., 40, pp. 3527-3532 Garcia-Contreras, R., Induction of prostaglandin E2 production by TiO2 nanoparticles in human gingival fibroblast (2014) In Vivo, 28, pp. 217-222 Garcia-Contreras, R., Effects of TiO2 nano glass ionomer cements against normal and cancer oral cells (2014) In Vivo, 28, pp. 895-907 Wang, J.J., Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells (2007) Mutat. Res., 628, pp. 99-106 Allaker, R.P., The use of nanoparticles to control oral biofilm formation (2010) J. Dent. Res., 89, pp. 1175-1186 Friedman, A.J., Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens (2013) J. Invest. Dermatol., 133, pp. 1231-1239 Fernandes, J.C., In vitro screening for anti-microbial activity of chitosans and chitooligosaccharides, aiming at potential uses in functional textiles (2010) J. Microbiol. Biotechnol., 20, pp. 311-318 Raafat, D., Insights into the mode of action of chitosan as an antibacterial compound (2008) Appl. Environ. Microbiol., 74, pp. 3764-3773 Kong, M., Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli (2008) Colloids Surf. B: Biointerfaces, 65, pp. 197-202 Beyth, N., Long-term antibacterial surface properties of composite resin incorporating polyethyleneimine nanoparticles (2010) Quintessence Int., 41, pp. 827-835 Beyth, N., Antibacterial activity of dental cements containing quaternary ammonium polyethylenimine nanoparticles (2012) J. Nanomater., 2012, pp. 814763-814766 Zhang, K., Effect of water-ageing on dentine bond strength and anti-biofilm activity of bonding agent containing new monomer dimethylaminododecyl methacrylate (2013) J. Dent., 41, pp. 504-513 Gong, S.-Q., Synthesis of antimicrobial silsesquioxane-silica hybrids by hydrolytic co-condensation of alkoxysilanes (2014) Polym. Chem., 5, pp. 454-462 Gong, S.Q., In vitro evaluation of antibacterial effect of AH Plus incorporated with quaternary ammonium epoxy silicate against Enterococcus faecalis (2014) J. Endod., 40, pp. 1611-1615 Zhuo Sun, X., The antimicrobial activities of a series of bis-quaternary ammonium compounds (2011) Chinese Chem. Lett., 22, pp. 887-890 Melo, M.A., Nanotechnology-based restorative materials for dental caries management (2013) Trends Biotechnol., 31, pp. 459-467 De Jong, W.H., Borm, P.J., Drug delivery and nanoparticles:applications and hazards (2008) Int. J. Nanomed., 3, pp. 133-149 Brannon-Peppas, L., Blanchette, J.O., Nanoparticle and targeted systems for cancer therapy (2012) Adv. Drug Deliv. Rev., 64, pp. 206-212 Endo, K., Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma (2013) Cancer Sci., 104, pp. 369-374 Holpuch, A.S., Nanoparticles for local drug delivery to the oral mucosa: proof of principle studies (2010) Pharm. Res., 27, pp. 1224-1236 Pinon-Segundo, E., Preparation and characterization of triclosan nanoparticles for periodontal treatment (2005) Int. J. Pharm., 294, pp. 217-232 Shrestha, A., Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity (2010) J. Endod., 36, pp. 1030-1035 Bahram, M., Synthesis of gold nanoparticles using pH-sensitive hydrogel and its application for colorimetric determination of acetaminophen, ascorbic acid and folic acid (2014) Colloids Surf. A, 441, pp. 517-524 Saito, N., Carbon nanotubes: biomaterial applications (2009) Chem. Soc. Rev., 38, pp. 1897-1903 Mao, H.Y., Graphene: promises, facts, opportunities, and challenges in nanomedicine (2013) Chem. Rev., 8, pp. 3407-3424 Akasaka, T., Modification of the dentin surface by using carbon nanotubes (2009) Biomed. Mater. Eng., 19, pp. 179-185 Zhang, H., Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis (2009) J. Endod., 35, pp. 1051-1055 Wagner, M.K., Use of quantum dots in the development of assays for cancer biomarkers (2010) Anal. Bioanal. Chem., 397, pp. 3213-3224 Cai, W., Applications of gold nanoparticles in cancer nanotechnology (2008) Nanotechnol. Sci. Appl., 2008, pp. 17-32 Jain, S., Gold nanoparticles as novel agents for cancer therapy (2012) Br. J. Radiol., 85, pp. 101-113 Van Landuyt, K.L., Nanoparticle release from dental composites (2014) Acta Biomater., 10, pp. 365-374 Bowen, R.L., Dental filling materials comprising of vinyl-silane resin-based composites fused silica and binder consisting of the reaction product of bis phenol and glycidyl methacrylate, US 3066112Curtis, A.R., Water uptake and strength characteristics of a nanofilled resin-based composite (2008) J. Dent., 36, pp. 186-193 Kim, Y., Effect of nano-carbonate apatite to prevent re-stain after dental bleaching in vitro (2011) J. Dent., 39, pp. 636-642 Ernst, C.P., Two-year clinical performance of a nanofiller vs a fine-particle hybrid resin composite (2006) Clin. Oral Investig., 10, pp. 119-125 Deng, D., Synthesis of newbantibacterial quaternary ammonium monomer for incorporation into CaP nanocomposite (2013) Dent. Mater., 29, pp. 859-870 Melo, M.A., Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles (2013) J. Biomed. Mater. Res. Part B Appl. Biomater., 10, pp. 620-629 Zhang, K., Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms (2012) Dent. Mater., 28, pp. 842-852 Feitosa, S.A., Doxycycline-encapsulated nanotube-modified dentin adhesives (2014) J. Dent. Res., 93, pp. 1270-1276 Turagan, N., Mudrakota, D.P., Effect of micro-additions of carbon nanotubes to polymethylmethacrylate on reduction in polymerization shrinkage (2013) J. Prosthodont., 22, pp. 105-111 Moraes, R.R., Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials (2011) Dent. Mater., 27, pp. 509-519 Moraes, R.R., Improved dental adhesive formulations based on reactive nanogel additives (2012) J. Dent. Res., 91, pp. 179-184 Dailing, E.A., Construction of monomer-free, highly crosslinked, water-compatible polymers (2014) J. Dent. Res., 93, pp. 1326-1331 Azami, M., Synthesis and solubility of calcium fluoride/hydroxyl-fluorapatite nanocrystals for dental applications (2011) Ceram. Int., 37, pp. 2007-2014 Xu, H.H., Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition (2011) Dent. Mater., 27, pp. 762-769 Chow, L.C., Ada Foundation, , Consisting of filler of nano particles of dicalcium phosphate anhydrous having particle size of 50nm to 200nm, strengthener of SiC curable resin including bisphenol glycidyl methacrylate (Bis-GMA), US 20090093566 A1 De-Deus, G., Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells (2009) J. Endod., 35, pp. 1387-1390 Yuan, Z., Effect of bioaggregate on mineral-associated gene expression in osteoblast cells (2010) J. Endod., 36, pp. 1145-1148 Min, J., The addition of nano-sized hydroxyapatite to a sports drink to inhibit dental erosion - in vitro study using bovine enamel (2011) J. Dent., 39, pp. 629-635 Srinivasan, S., Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration (2012) Carbohydr. Polym., 87, pp. 274-283 Lainovic, T., Nanotechnology in dentistry - current state and future perspectives (2012) Serbian Dent. J., 59, pp. 44-47 Abrishamchian, A., Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: an in vitro study (2013) Mater. Sci. Eng. C: Mater. Biol. Appl., 33, pp. 2002-2010 Lee, H.H., Biomedical nanocomposites of poly(lactic acid) and calcium phosphate hybridized with modified carbon nanotubes for hard tissue implants (2011) J. Biomed. Mater. Res. B: Appl. Biomater., 98, pp. 246-254 Yoshida, Y., Self-assembled nano-layering at the adhesive interface (2012) J. Dent. Res., 91, pp. 376-381 Yoshihara, K., Nanolayering of phosphoric acid ester monomer on enamel and dentin (2011) Acta Biomater., 7, pp. 3187-3195 Niu, L.N., Biomimetic remineralization of dentin (2014) Dent. Mater., 30, pp. 77-96 Fioretti, F., Nanostructured assemblies for dental applications (2010) ACS Nano, 4, pp. 3277-3287 Fioretti, F., Nano-odontology: nanostructured assemblies for endodontic regeneration (2011) J. Biomed. Nanotechnol., 7, pp. 471-475 Besinis, A., Remineralization potential of fully demineralized dentin infiltrated with silica and hydroxyapatite nanoparticles (2014) Dent. Mater., 30, pp. 249-262 Sauro, S., Influence of phosphoproteins' biomimetic analogs on remineralization of mineral-depleted resin-dentin interfaces created with ion-releasing resin-based systems (2015) Dent. Mater., 31, pp. 759-777 Hannig, C., Hannig, M., Natural enamel wear - a physiological source of hydroxyapatite nanoparticles for biofilm management and tooth repair? (2010) Med. Hypotheses, 74, pp. 670-672 Kim, J.K., Differentiating dental pulp cells via RGD-dendrimer conjugates (2010) J. Dent. Res., 89, pp. 1433-1438 Chen, L., Regeneration of biomimetic hydroxyapatite on etched human enamel by anionic PAMAM template in vitro (2013) Arch. Oral Biol., 58, pp. 975-980 Wu, D., Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel (2013) Biomaterials, 34, pp. 5036-5047 Li, J., Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer (2013) Biomaterials, 34, pp. 6738-6747 Vallittu, P., Dental and medical polymer composites and compositions, , CA 2437622 A1 Kangasniemi, L., Dental or medical device, , WO 2003030837 A1 Zech, J., Lechner, G., 3M ESPE AG. Hardenable mass with silane dendrimers, , US 20026335413 B1 Dodiuk-Kenig, H., Premier Dental Products Company Dental compostions based on nanofiber reinforcement, , WO 2007024652 Brandenburg, C.J., Cohen, G.M., Pont, D., Tri (Meth) acrylate-based dendrimers as base monomers for materials leading to improved dental composites and dental composites made therefrom, WO 2006031970A1De Fúcio, S.B., Biomechanical degradation of the nano-filled resin-modified glass-ionomer surface (2012) Am. J. Dent., 25, pp. 315-320 Yen, A.H., Yelick, P.C., Dental tissue regeneration- a mini-review (2011) Gerontology, 57, pp. 85-94 Xavier, J.R., Promises for improved dental tissue regeneration (2015) Nanotechnology in Endodontics, pp. 5-22. , Springer, A. Kishen (Ed.) Moghadas, L., Shahmoradi, M., The University Of British Columbia Composition and method for irrigation of dental root canal, , AU 2012100480A4 Corral, J.S.M., Consejo Superior de Investigaciones Cientificas (CSIC). Nanostructured calcium-silver phosphate composite powder, method for obtaining same, and bactericidal and fungicidal uses thereof, EP 2380687 A1Bobeshko, M.N., Modified adhesive composition for blade denture fixation, , RU 20112444349 C2 Jin, G., Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium (2014) Biomaterials, 35, pp. 7699-76713 Espinosa-Cristóbal, L.F., Adherence inhibition of Streptococcus mutans on dental enamel surface using silver nanoparticles (2013) Mater. Sci. Eng. C: Mater. Biol. Appl., 33, pp. 2197-2202 Bawaskar, M., A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum (2010) Curr. Nanosci., 6, pp. 376-380 Huang, L., Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections (2011) Antimicrob. Agents Chemother., 55, pp. 3432-3438 Fayaz, A.M., Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria (2010) Nanomedicine, 6, pp. 103-109 Melo, M.A., Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate (2013) Dent. Mater., 29, pp. 199-210 Cheng, L., Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles (2012) Dent. Mater., 28, pp. 561-572 Santos, V.E., A new 'silver-bullet' to treat caries in children - nano silver fluoride: a randomised clinical trial (2014) J. Dent., 42, pp. 945-951 Memarzadeh, K., Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants (2015) J. Biomed. Mater. Res. Part A, 103, pp. 981-989 Toledano, M., A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface (2013) Dent. Mater., 29, pp. e142-e152 Osorio, R., Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement (2014) J. Endod., 40, pp. 1840-1845 Kasraei, S., Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus (2014) Restor. Dent. Endod., 39, pp. 109-114 Vargas-Reus, M.A., Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens (2012) Int. J. Antimicrob. Agents, 40, pp. 135-139 Guerreiro-Tanomaru, J.M., Effect of zirconium oxide and zinc oxide nanoparticles on physicochemical properties and antibiofilm activity of a calcium silicate-based material (2014) Sci. World J., 2014, p. 975213 Poosti, M., Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles (2013) Eur. J. Orthod., 35, pp. 676-679 Liu, W., Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility (2014) Nanoscale, 6, pp. 9050-9062 Martin, J., Effectiveness of 6% hydrogen peroxide concentration for tooth bleaching - a double-blind, randomized clinical trial (2015) J. Dent., 43, pp. 965-972 Targino, A.G.R., An innovative approach to treating dental decay in children. A new anti-caries agent (2014) J. Mater. Sci. Mater. Med., 25, pp. 2041-2047 Kim, S.H., Immobilization of BMP-2 on a nano-hydroxyapatite-coated titanium surface using a chitosan calcium chelating agent (2013) Int. J. Artif. Organs, 36, pp. 506-517 Beytha, N., Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 22038-22043