dc.date2016
dc.date2016-06-03T20:15:42Z
dc.date2016-06-03T20:15:42Z
dc.date.accessioned2018-03-29T01:34:19Z
dc.date.available2018-03-29T01:34:19Z
dc.identifier
dc.identifierTest. Springer New York Llc, v. 25, n. 2, p. 375 - 396, 2016.
dc.identifier11330686
dc.identifier10.1007/s11749-015-0460-4
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84937111398&partnerID=40&md5=da6d66302c7c226715e273baa7263abe
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/238472
dc.identifier2-s2.0-84937111398
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1305133
dc.descriptionThe traditional estimation of mixture regression models is based on the assumption of normality (symmetry) of component errors and thus is sensitive to outliers, heavy-tailed errors and/or asymmetric errors. In this work we present a proposal to deal with these issues simultaneously in the context of the mixture regression by extending the classic normal model by assuming that the random errors follow a scale mixtures of skew-normal distributions. This approach allows us to model data with great flexibility, accommodating skewness and heavy tails. The main virtue of considering the mixture regression models under the class of scale mixtures of skew-normal distributions is that they have a nice hierarchical representation which allows easy implementation of inference. We develop a simple EM-type algorithm to perform maximum likelihood inference of the parameters of the proposed model. In order to examine the robust aspect of this flexible model against outlying observations, some simulation studies are also presented. Finally, a real data set is analyzed, illustrating the usefulness of the proposed method. © 2015 Sociedad de Estadística e Investigación Operativa
dc.description25
dc.description2
dc.description375
dc.description396
dc.description
dc.description
dc.languageen
dc.publisherSpringer New York LLC
dc.relationTest
dc.rightsfechado
dc.sourceScopus
dc.titleRobust Mixture Regression Modeling Based On Scale Mixtures Of Skew-normal Distributions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución