Artículos de revistas
Species Distribution And Introgressive Hybridization Of Two Avicennia Species From The Western Hemisphere Unveiled By Phylogeographic Patterns Phylogenetics And Phylogeography
Registro en:
Bmc Evolutionary Biology. Biomed Central Ltd., v. 15, n. 1, p. , 2015.
14712148
10.1186/s12862-015-0343-z
2-s2.0-84928046014
Institución
Resumen
Background: Mangrove plants grow in the intertidal zone in tropical and subtropical regions worldwide. The global latitudinal distribution of the mangrove is mainly influenced by climatic and oceanographic features. Because of current climate changes, poleward range expansions have been reported for the major biogeographic regions of mangrove forests in the Western and Eastern Hemispheres. There is evidence that mangrove forests also responded similarly after the last glaciation by expanding their ranges. In this context, the use of genetic tools is an informative approach for understanding how historical processes and factors impact the distribution of mangrove species. We investigated the phylogeographic patterns of two Avicennia species, A. germinans and A. schaueriana, from the Western Hemisphere using nuclear and chloroplast DNA markers. Results: Our results indicate that, although Avicennia bicolor, A. germinans and A. schaueriana are independent lineages, hybridization between A. schaueriana and A. germinans is a relevant evolutionary process. Our findings also reinforce the role of long-distance dispersal in widespread mangrove species such as A. germinans, for which we observed signs of transatlantic dispersal, a process that has, most likely, contributed to the breadth of the distribution of A. germinans. However, along the southern coast of South America, A. schaueriana is the only representative of the genus. The distribution patterns of A. germinans and A. schaueriana are explained by their different responses to past climate changes and by the unequal historical effectiveness of relative gene flow by propagules and pollen. Conclusions: We observed that A. bicolor, A. germinans and A. schaueriana are three evolutionary lineages that present historical and ongoing hybridization on the American continent. We also inferred a new evidence of transatlantic dispersal for A. germinans, which may have contributed to its widespread distribution. Despite the generally wider distribution of A. germinans, only A. schaueriana is found in southern South America, which may be explained by the different demographic histories of these two species and the larger proportion of gene flow produced by propagules rather than pollen in A. schaueriana. These results highlight that these species responded in different ways to past events, indicating that such differences may also occur in the currently changing world. © 2015 Mori et al.; licensee BioMed Central. 15 1
Tomlinson, P.B., (1986) The Botany of Mangroves, p. 419. , 1 Cambridge University Press Cambridge, MA Pickens, C.N., Hester, M.W., Temperature tolerance of early life history stages of black mangrove Avicennia germinans: Implications for range expansion (2010) Estuaries and Coasts, 34, pp. 824-830 Duke, N.C., Ball, M.C., Ellison, J.C., Factors influencing biodiversity and distributional gradients in mangroves (1998) Glob Ecol Biogeogr Lett, 7, pp. 27-47 Quisthoudt, K., Schmitz, N., Randin, C.F., Dahdouh-Guebas, F., Robert, E.M.R., Koedam, N., Temperature variation among mangrove latitudinal range limits worldwide (2012) Trees, 26, pp. 1919-1931 Saintilan, N., Wilson, N.C., Rogers, K., Rajkaran, A., Krauss, K.W., Mangrove expansion and salt marsh decline at mangrove poleward limits (2014) Glob Chang Biol, 20, pp. 147-157. , 23907934 McKee, K.L., Rogers, K., Saintilan, N., Response of salt marsh and mangrove wetlands to changes in atmospheric CO<inf>2</inf>, climate, and sea level (2012) Global Change and the Function and Distribution of Wetlands. First, pp. 63-96. , B.A. Middleton (eds) Springer Netherlands Dordrecht Comeaux, R.S., Allison, M.A., Bianchi, T.S., Mangrove expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels (2012) Estuar Coast Shelf Sci, 96, pp. 81-95. , 1:CAS:528:DC%2BC38XotV2g Osland, M.J., Enwright, N., Day, R.H., Doyle, T.W., Winter climate change and coastal wetland foundation species: Salt marshes vs. Mangrove forests in the southeastern United States (2013) Glob Chang Biol, 19, pp. 1482-1494. , 23504931 Perry, C.L., Mendelssohn, I.A., Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh (2009) Wetlands, 29, pp. 396-406 Soares, M.L.G., Estrada, G.C.D., Fernandez, V., Tognella, M.M.P., Southern limit of the Western South Atlantic mangroves: Assessment of the potential effects of global warming from a biogeographical perspective (2012) Estuar Coast Shelf Sci, 101, pp. 44-53 Adams, J.B., Colloty, B.M., Bate, G.C., The distribution and state of mangroves along the coast of Transkei, Eastern Cape Province, South Africa (2004) Wetlands Ecol Manage, 12, pp. 531-541 Stokes, D.J., Healy, T.R., Cooke, P.J., Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier-enclosed lagoon, Tauranga Harbour, New Zealand (2010) J Coastal Res, 261, pp. 113-122 Lovelock, C.E., Feller, I.C., Ellis, J., Schwarz, A.M., Hancock, N., Nichols, P., Sorrell, B., Mangrove growth in New Zealand estuaries: The role of nutrient enrichment at sites with contrasting rates of sedimentation (2007) Oecologia, 153, pp. 633-641. , 17492316 Saintilan, N., Williams, R.J., Mangrove transgression into saltmarsh environments in South-East Australia (1999) Glob Ecol Biogeogr, 8, p. 1999 Ellison, J., Pollen evidence of Late Holocene mangrove development in Bermuda (1996) Glob Ecol Biogeogr Lett, 5, pp. 315-326 Ellison, J.C., Long-term retrospection on mangrove development using sediment cores and pollen analysis: A review (2008) Aquat Bot, 89, pp. 93-104 Pil, M.W., Boeger, M.R.T., Muschner, V.C., Pie, M.R., Ostrensky, A., Boeger, W., Postglacial north-south expansion of populations of Rhizophora mangle (Rhizophoraceae) along the Brazilian coast revealed by microsatellite analysis (2011) Am J Bot, 98, pp. 1031-1039. , 21653512 Nettel, A., Dodd, R.S., Drifting propagules and receding swamps: Genetic footprints of mangrove recolonization and dispersal along tropical coasts (2007) Evolution, 61, pp. 958-971. , 1:CAS:528:DC%2BD1cXltFCltLc%3D 17439624 Sandoval-Castro, E., Dodd, R.S., Riosmena-Rodríguez, R., Enríquez-Paredes, L.M., Tovilla-Hernández, C., López-Vivas, J.M., Aguilar-May, B., Muñiz-Salazar, R., Post-glacial expansion and population genetic divergence of mangrove species Avicennia germinans (L.) Stearn and Rhizophora mangle L. Along the Mexican coast (2014) PLoS One, 9. , e93358 3974753 24699389 Takayama, K., Tamura, M., Tateishi, Y., Webb, E.L., Kajita, T., Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis (2013) Am J Bot, 100, pp. 1-11 Schaeffer-Novelli, Y., Cintrón-Molero, G., Adaime, R.R., De Camargo, T.M., De Camargo, T.M., Variability of mangrove ecosystems along the Brazilian coast (1990) Estuaries, 13, pp. 204-218 Spalding, M., Kainuma, M., Collins, L., (2010) World Atlas of Mangroves, p. 319. , 2 Earthscan London Nettel, A., Dodd, R.S., Afzal-Rafii, Z., Tovilla-Hernández, C., Genetic diversity enhanced by ancient introgression and secondary contact in East Pacific black mangroves (2008) Mol Ecol, 17, pp. 2680-2690. , 1:CAS:528:DC%2BD1cXotlCksLY%3D 18466233 Nettel, A., Dodd, R.S., Ochoa-Zavala, M., Tovilla-Hernández, C., Días-Gallegos, J.R., Mating system analyses of tropical populations of the black mangrove Avicennia germinans (L.) L. (Avicenniaceae) (2013) Bot Sci, 91, pp. 115-117 Cerón-Souza, I., Bermingham, E., McMillan, W.O., Jones, F.A., Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama (2012) BMC Evol Biol, 12, p. 205. , 3543234 23078287 Mori, G.M., Zucchi, M.I., Souza, A.P., Multiple-geographic-scale genetic structure of two mangrove tree species: The roles of mating system, hybridization, limited dispersal and extrinsic factors (2015) PLoS One, 10, pp. 1-23 Demesure, B., Sodzi, N., Petit, R.J., A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants (1995) Mol Ecol, 4, pp. 129-131. , 1:CAS:528:DyaK2MXltlegsbY%3D 7711952 White, T.T.J., Bruns, T., Lee, S., Taylor, J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics (1990) PCR Protocols: A Guide to Methods and Applications. Academic P, pp. 315-322. , M.A. Innis D.H. Gelfand J.J. Sninsky T.J. White (eds) Academic Press San Diego Edgar, R.C., MUSCLE: A multiple sequence alignment method with reduced time and space complexity (2004) BMC Bioinformatics, 5, p. 113. , 517706 15318951 Stephens, M., Smith, N.J., Donnelly, P., A new statistical method for haplotype reconstruction from population data (2001) Am J Hum Genet, 68, pp. 978-989. , 1275651 1:STN:280:DC%2BD3M3kslWgsA%3D%3D 11254454 Bandelt, H.J., Forster, P., Röhl, A., Median-joining networks for inferring intraspecific phylogenies (1999) Mol Biol Evol, 16, pp. 37-48. , 1:CAS:528:DyaK1MXjvVGltA%3D%3D 10331250 Leigh, J., Bryant, D., Steel, M., (2014) PopART Excoffier, L., Lischer, H.E.L., Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows (2010) Mol Ecol Resour, 10, pp. 564-567. , 21565059 (2013) R: A Language and Environment for Statistical Computing, , R Core Team C Wright, S., Isolation by distance (1943) Genetics, 28, pp. 114-138. , 1:STN:280:DC%2BD2s%2FmsFSmsg%3D%3D 17247074 Nei, M., Analysis of gene diversity in subdivided populations (1973) Proc Natl Acad Sci, 70, pp. 3321-3323. , 427228 1:STN:280:DyaE2c%2FlsFCrtQ%3D%3D 4519626 Librado, P., Rozas, J., DnaSP v5: A software for comprehensive analysis of DNA polymorphism data (2009) Bioinformatics, 25, pp. 1451-1452. , 1:CAS:528:DC%2BD1MXmtFeqtr8%3D 19346325 Ennos, R.A., Estimating the relative rates of pollen and seed migration among plant populations (1994) Heredity, 72, pp. 250-259 Excoffier, L., Smouse, P., Quattro, J., Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data (1992) Genetics, 131, pp. 479-491. , 1:CAS:528:DyaK38XlsVCntro%3D 1644282 Dodd, R.S., Afzal-Rafii, Z., Kashani, N., Budrick, J., Land barriers and open oceans: Effects on gene diversity and population structure in Avicennia germinans L. (Avicenniaceae) (2002) Mol Ecol, 11, pp. 1327-1338. , 1:STN:280:DC%2BD38zps1Ghsw%3D%3D 12144655 Nascimento, W.R., Souza-Filho, P.W.M., Proisy, C., Lucas, R.M., Rosenqvist, A., Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery (2013) Estuar Coast Shelf Sci, 117, pp. 83-93 Pons, O., Petit, R.J., Measuring and testing genetic differentiation with ordered versus unordered alleles (1996) Genetics, 144, pp. 1237-1245. , 1:STN:280:DyaK2s%2FntVygug%3D%3D 8913764 Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism (1989) Genetics, 595, pp. 585-595 Fu, Y.-X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection (1997) Genetics, 147, pp. 915-925. , 1:STN:280:DyaK2svns1egtQ%3D%3D 9335623 Fu, Y.-X., Li, W.-H., Statistical tests of neutrality of mutations (1993) Genetics, 133, pp. 693-709. , 1:STN:280:DyaK3s3gt1Crsw%3D%3D 8454210 Ramírez-Soriano, A., Ramos-Onsins, S.E., Rozas, J., Calafell, F., Navarro, A., Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination (2008) Genetics, 179, pp. 555-567. , 2390632 18493071 Rogers, A.R., Harpending, H., Population growth makes waves in the distribution of pairwise genetic differences (1992) Mol Biol Evol, 9, pp. 552-569. , 1316531 Ramos-Onsins, S.E., Rozas, J., Statistical properties of new neutrality tests against population growth (2002) Mol Biol Evol, 19, pp. 2092-2100. , 1:CAS:528:DC%2BD38Xps12hsrc%3D 12446801 Slatkin, M., Hudson, R.R., Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations (1991) Genetics, 562, pp. 555-562 Rannala, B., Gene genealogy in a population of variable size (1997) Heredity, 78, pp. 417-423. , 9134707 Rosenberg, N.A., Hirsh, A.E., On the use of star-shaped genealogies in inference of coalescence times (2003) Genetics, 1682, pp. 1677-1682 Cerón-Souza, I., Rivera-Ocasio, E., Medina, E., Jiménez, J.A., McMillan, W.O., Bermingham, E., Hybridization and introgression in New World red mangroves, Rhizophora (Rhizophoraceae) (2010) Am J Bot, 97, pp. 945-957. , 21622465 Sun, M., Lo, E.Y.Y., Genomic markers reveal introgressive hybridization in the Indo-West Pacific mangroves: A case study (2011) PLoS One, 6. , e19671 3092761 1:CAS:528:DC%2BC3MXmt1ejtLo%3D 21589927 Qiu, S., Zhou, R., Li, Y., Havanond, S., Molecular evidence for natural hybridization between Sonneratia alba and S. Griffithii (2008) J Syst Evol, 46, pp. 391-395 Zhou, R., Gong, X., Boufford, D., Wu, C.-I., Shi, S., Testing a hypothesis of unidirectional hybridization in plants: Observations on Sonneratia, Bruguiera and Ligularia (2008) BMC Evol Biol, 8, p. 149. , 2409324 18485207 Guo, M., Zhou, R., Huang, Y., Ouyang, J., Shi, S., Molecular confirmation of natural hybridization between Lumnitzera racemosa and Lumnitzera littorea (2011) Aquat Bot, 95, pp. 59-64 Duke, N.C., Overlap of eastern and western mangroves in the South-western Pacific: Hybridization of all three Rhizophora (Rhizophoraceae) combinations in New Caledonia (2010) Blumea Biodivers Evol Biogeography Plants, 55, pp. 171-188 Takayama, K., Tateishi, Y., Murata, J., Kajita, T., Gene flow and population subdivision in a pantropical plant with sea-drifted seeds Hibiscus tiliaceus and its allied species: Evidence from microsatellite analyses (2008) Mol Ecol, 17, pp. 2730-2742. , 1:CAS:528:DC%2BD1cXotlCksbw%3D 18482261 Álvarez, I., Wendel, J.F., Ribosomal ITS sequences and plant phylogenetic inference (2003) Mol Phylogenet Evol, 29, pp. 417-434. , 14615184 Nieto Feliner, G., Rosselló, J.A., Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants (2007) Mol Phylogenet Evol, 44, pp. 911-919. , 1:CAS:528:DC%2BD2sXnslGgsb0%3D 17383902 Rabinowitz, D., Dispersal properties of mangrove propagules (1978) Biotropica, 10, pp. 47-57 Takayama, K., Kajita, T., Murata, J., Tateishi, Y., Phylogeography and genetic structure of Hibiscus tiliaceus-speciation of a pantropical plant with sea-drifted seeds (2006) Mol Ecol, 15, pp. 2871-2881. , 1:CAS:528:DC%2BD28XhtVKnsbbF 16911207 Dick, C.W., Bermingham, E., Lemes, M.R., Gribel, R., Extreme long-distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics (2007) Mol Ecol, 16, pp. 3039-3049. , 17614916 Lumpkin, R., Johnson, G.C., Global ocean surface velocities from drifters: Mean, variance, El Niño-Southern Oscillation response, and seasonal cycle (2013) J Geophysical Res Oceans, 118, pp. 2992-3006 Islam, M.S., Lian, C., Kameyama, N., Hogetsu, T., Low genetic diversity and limited gene flow in a dominant mangrove tree species (Rhizophora stylosa) at its northern biogeographical limit across the chain of three Sakishima islands of the Japanese archipelago as revealed by chloroplast and nuclear SSR analysis (2014) Plant Syst Evol, 300, pp. 1123-1136. , 1:CAS:528:DC%2BC3sXhvFGiu7rF Lo, E.Y.Y., Duke, N.C., Sun, M., Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution (2014) BMC Evol Biol, 14, p. 83. , 4021169 24742016 McGuinness, K.A., Dispersal, establishment and survival of Ceriops tagal propagules in a north Australian mangrove forest (1996) Oecologia, 109, pp. 80-87 Liao, P.-C., Hwang, S.-Y., Huang, S., Chiang, Y.-C., Wang, J.-C., Contrasting demographic patterns of Ceriops tagal (Rhizophoraceae) populations in the South China Sea (2011) Aust J Bot, 59, p. 523 Liao, P.C., Chiang, Y.C., Huang, S., Wang, J.C., Gene flow of Ceriops Tagal (Rhizophoraceae) across the kra isthmus in the thai malay peninsula (2009) Bot Stud, 50, pp. 193-204 Geng, Q., Lian, C., Goto, S., Tao, J., Kimura, M., Islam, M.S., Hogetsu, T., Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel (2008) Mol Ecol, 17, pp. 4724-4739. , 1:CAS:528:DC%2BD1cXhsFCiurvM 19140988 Chiang, T.Y., Chiang, Y.C., Chen, Y.J., Chou, C.H., Havanond, S., Hong, T.N., Huang, S., Phylogeography of Kandelia candel in East Asiatic mangroves based on nucleotide variation of chloroplast and mitochondrial DNAs (2001) Mol Ecol, 10, pp. 2697-2710. , 1:CAS:528:DC%2BD3MXpt12lsLw%3D 11883883 Islam, M.S., Lian, C., Kameyama, N., Hogetsu, T., Analyses of genetic population structure of two ecologically important mangrove tree species, Bruguiera gymnorrhiza and Kandelia obovata from different river basins of Iriomote Island of the Ryukyu Archipelago, Japan (2012) Tree Genet Genomes, 8, pp. 1247-1260 Wang, I.J., Recognizing the temporal distinctions between landscape genetics and phylogeography (2010) Mol Ecol, 19, pp. 2605-2608. , 20561197 Anderson, C.D., Epperson, B.K., Fortin, M.-J., Holderegger, R., James, P.M.A., Rosenberg, M.S., Scribner, K.T., Spear, S., Considering spatial and temporal scale in landscape-genetic studies of gene flow (2010) Mol Ecol, 19, pp. 3565-3575. , 20723051 Sunnucks, P., Efficient genetic markers for population biology (2000) Trends Ecol Evol, 15, pp. 199-203. , 10782134 Arnaud-Haond, S., Teixeira, S., Massa, S.I., Billot, C., Saenger, P., Coupland, G., Duarte, C.M., Serrão, E.A., Genetic structure at range edge: Low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations (2006) Mol Ecol, 15, pp. 3515-3525. , 1:CAS:528:DC%2BD28Xht1Ois7fI 17032254 Woodroffe, C.D., Grindrod, J., Mangrove biogeography: The role of Quaternary environmental and sea-level change (1991) J Biogeogr, 18, pp. 479-492