dc.date2016
dc.date2016-06-03T20:15:22Z
dc.date2016-06-03T20:15:22Z
dc.date.accessioned2018-03-29T01:34:01Z
dc.date.available2018-03-29T01:34:01Z
dc.identifier
dc.identifierRevista De Nutricao. Revista De Nutricao, v. 29, n. 1, p. 1 - 10, 2016.
dc.identifier14155273
dc.identifier10.1590/1678-98652016000100001
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84956935817&partnerID=40&md5=877a66e5ed72b1d11c2894615a6ac367
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/238401
dc.identifier2-s2.0-84956935817
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1305062
dc.descriptionObjective To evaluate whether the single nucleotide polymorphism rs7895833 (A/G) of the gene SIRT1 is associated with metabolic syndrome criteria in a sample of Brazilian adults. Methods Serum samples and oral mucosal cells were collected from 243 subjects aged 30 to 70 years. Biochemical, hormonal, and anthropometric data were obtained. The single nucleotide polymorphism rs7895833 (A/G) was analyzed by polymerase chain reaction using the amplification refractory mutation system. Results Among the 243 study subjects, 100 (41.15%) were classified as non-metabolic syndrome and 143 (58.85%), as metabolic syndrome. The frequency of the single nucleotide polymorphism rs7895833 (A/G) did not differ between the groups. However, 111 patients (45.67%) were overweight (body mass index: 25-29.9 kg/m2). Blood glucose, total cholesterol, triglycerides, very low density lipoprotein, low density lipoprotein, waist and hip circumferences, and blood pressure were higher in the metabolic syndrome group than in the non-metabolic syndrome group. Free thyroxine 4, grown hormone, and insulin levels were within the normal range. The metabolic conditions of the patients with metabolic syndrome indicate biochemical, anthropometric, and hormonal changes characteristic of overweight and obesity. Conclusion The SIRT1 polymorphism rs7895833 (A/G) is not associated with the metabolic syndrome in the adult Brazilian population.
dc.description29
dc.description1
dc.description1
dc.description10
dc.descriptionIpadeola, A., Adeleye, J.O., The metabolic syndrome and accurate cardiovascular risk prediction in persons with type 2 diabetes Mellitus (2015) Diabetes Metab Syndr, , http://dx.doi.org/10.1016/j.dsx.2015.08.011
dc.descriptionExecutive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evolution and treatment of high blood cholesterol (2005) JAMA, 285 (19), pp. 2486-2497
dc.descriptionBarzilai, N., Bartke, A., Biological approaches to mechanistically understand the healthy life Span extension achieved by calorie restriction and modulation of hormones (2009) J Gerontol Biol Sci, 2 (12), pp. 187-191. , http://dx.doi.org/10.1093/gerona/gln061
dc.descriptionMasoro, E.J., Overview of the effects of food restriction (1989) Prog Clin Biol Res, 287, pp. 27-35
dc.descriptionBerner, Y.N., Stern, F., Energy restriction controls aging through neuroendocrine signal transduction (2004) Ageing Res Rev, 3 (2), pp. 189-198. , http://dx.doi.org/10.1016/j.arr.2003.10.004
dc.descriptionHolloszy, J.O., Fontana, L., Caloric restriction in humans (2007) Exp Gerontol, 42 (8), pp. 709-712. , http://dx.doi.org/10.1016/j.exger.2007.03.009
dc.descriptionChen, D., Bruno, J., Easlon, E., Lin, S.J., Cheng, H.L., Alt, F.W., Tissue-specific regulation of SIRT1 by calorie restriction (2008) Genes Dev, 22 (13), pp. 1753-1757. , http://dx.doi.org/10.1101/gad.1650608
dc.descriptionFrye, R.A., Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins (2000) Biochem Biophys Res Commun, 273 (2), pp. 793-798. , http://dx.doi.org/10.1006/bbrc.2000.3000
dc.descriptionBaur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Resveratrol improves health and survival of mice on a high-calorie diet (2006) Nature, 444 (7117), pp. 337-342. , http://dx.doi.org/10.1038/nature05354
dc.descriptionLagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha (2006) Cell, 127 (16), pp. 1109-1122. , http://dx.doi.org/10.1016/j.cell.2006.11.013
dc.descriptionPicard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado de Oliveira, R., Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma (2004) Nature, 429 (6993), pp. 771-776. , http://dx.doi.org/10.1038/nature02583
dc.descriptionBoezen, H.M., SIRT1 polymorphism, long-term survival and glucose tolerance in the general population (2013) PLoS One, 8 (3). , http://dx.doi.org/10.1371/journal.pone.0058636
dc.descriptionDong, Y., Guo, T., Traurig, M., Mason, C.C., Kobes, S., Perez, J., SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians (2011) Mol Genet Metab, 104 (4), pp. 661-665. , http://dx.doi.org/10.1016/j.ymgme.2011.08.001
dc.descriptionZillikens, M.C., van Meurs, J.B., Sijbrands, E.J., Rivadeneira, F., Dehghan, A., van Leeuwen, J.P., SIRT1 genetic variation and mortality in type 2 diabetes: Interaction with smoking and dietary niacin (2009) Free Radic Biol Med, 46 (6), pp. 836-841. , http://dx.doi.org/10.1016/j.freeradbiomed.2008.12.022
dc.descriptionPeeters, A.V., Beckers, S., Verrijken, A., Mertens, I., Roevens, P., Peeters, P.J., Association of SIRT1 gene variation with visceral obesity (2008) Hum Genet, 124 (4), pp. 431-436. , http://dx.doi.org/10.1007/s00439-008-0567-8
dc.descriptionWeyrich, P., Machicao, F., Reinhardt, J., Machann, J., Schick, F., Tschritter, O., SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention: The TULIP study (2008) BMC Med Genet, 9, p. 100. , http://dx.doi.org/10.1186/1471-2350-9-100
dc.descriptionPedersen, S.B., Olholm, J., Paulsen, S.K., Bennetzen, M.F., Richelsen, B., Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women (2008) Int J Obes, 32 (18), pp. 1250-1255. , http://dx.doi.org/10.1038/ijo.2008.78
dc.descriptionShimoyama, Y., Suzuki, K., Hamajima, N., Niwa, T., Sirtuin 1 gene polymorphisms are associated with body fat and blood pressure in Japanese (2011) Transl Res, 157 (6), pp. 339-347. , http://dx.doi.org/10.1016/j.trsl.2011.02.004
dc.descriptionZillikens, M.C., Van Meurs, J.B., Rivadeneira, F., Amin, N., Hofman, A., Oostra, B.A., SIRT1 genetic variation is related to BMI and risk of obesity (2009) Diabetes, 58 (12), pp. 2828-2834. , http://dx.doi.org/10.2337/db09-0536
dc.descriptionZillikens, M.C., Van Meurs, J.B., Rivadeneira, F., Hofman, A., Oostra, B.A., Sijbrands, E.J., Interactions between dietary vitamin E intake and SIRT1 genetic variation influence body mass index (2010) Am J Clin Nutr, 91 (5), pp. 1387-1393. , http://dx.doi.org/10.3945/ajcn.2009.28627
dc.description(2004) Obesidade: prevenindo e controlando a epidemia global, , Relatório da Consultoria da OMS. São Paulo: Rocca
dc.descriptionFriedewald, W.T., Levy, R.I., Fredrickson, D.S., Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge (1972) Clin Chem, 18 (6), pp. 499-502
dc.descriptionArruda, V.R., Lima, C.S., Grignoli, C.R., de Melo, M.B., Lorand-Metze, I., Alberto, F.L., Increased risk for acute myeloid leukaemia in individuals with glutathione S-transferase mu1 (GSTM1) and theta1 (GSTT1) gene defects (2001) Eur J Haematol, 66 (6), pp. 383-388. , http://dx.doi.org/10.1034/j.1600-0609.2001.066006383.x
dc.descriptionShimoyama, Y., Mitsuda, Y., Tsuruta, Y., Suzuki, K., Hamajima, N., Niwa, T., SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification in Japanese hemodialysis patients (2012) J Ren Nutr, 22 (1), pp. 114-119. , http://dx.doi.org/10.1053/j.jrn.2011.10.025
dc.descriptionZarrabeitia, M.T., Valero, C., Martín-Escudero, J.C., Olmos, J.M., Bolado-Carrancio, A., de Sande-Nacarino, E.L., Association study of sirtuin 1 polymorphisms with bone mineral density and body mass index (2012) Arch Med Res, 43 (5), pp. 363-368. , http://dx.doi.org/10.1016/j.arcmed.2012.06.012
dc.descriptionClark, S.J., Falchi, M., Olsson, B., Jacobson, P., Cauchi, S., Balkau, B., Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity (2012) Obesity, 20 (1), pp. 178-185. , http://dx.doi.org/10.1038/oby.2011.200
dc.descriptionFigarska, S.M., Vonk, J.M., Boezen, H.M., SIRT1 polymorphism, long-term survival and glucose tolerance in the general population (2013) PLoS One, 8 (3). , http://dx.doi.org/10.1371/journal.pone.0058636
dc.descriptionYang, J., Wang, N., Zhu, Y., Feng, P., Roles of SIRT1 in high glucose-induced endothelial impairment: Association with diabetic atherosclerosis (2011) Arch Med Res, 42 (5), pp. 354-360. , http://dx.doi.org/10.1016/j.arcmed.2011.07.005
dc.descriptionBotden, I.P., Zillikens, M.C., de Rooij, S.R., Langendonk, J.G., Danser, A.H., Sijbrands, E.J., Variants in the SIRT1 gene may affect diabetes risk in interaction with prenatal exposure to famine (2012) Diabetes Care, 35 (2), pp. 424-426. , http://dx.doi.org/10.2337/dc11-1203
dc.descriptionKilic, U., Gok, O., Bacaksiz, A., Izmirli, M., Elibol-Can, B., Uysal, O., SIRT1 gene polymorphisms affect the protein expression in cardiovascular diseases (2014) PLoS One, 9. , http://dx.doi.org/10.1371/journal.pone.0090428
dc.descriptionMateo-Gallego, R., Bea, A.M., Jarauta, E., Perez-Ruiz, M.R., Civeira, F., Age and sex influence the relationship between waist circumference and abdominal fat distribution measured by bioelectrical impedance (2012) Nutr Res, 32 (6), pp. 466-469. , http://dx.doi.org/10.1016/j.nutres.2012.05.004
dc.descriptionCarr, M.C., The emergence of the metabolic syndrome with menopause (2003) J Clin Endocrinol Metab, 88 (6), pp. 2404-2411. , http://dx.doi.org/10.1210/jc.2003-030242
dc.descriptionGupta, R., Deedwania, P.C., Gupta, A., Rastogi, S., Panwar, R.B., Kothari, K., Prevalence of metabolic syndrome in an Indian urban population (2004) Int J Cardiol, 97 (2), pp. 257-261. , http://dx.doi.org/10.1016/j.ijcard.2003.11.003
dc.descriptionMachado, U.F., Schaan, B.D., Seraphim, B.M., Glucose transporters in the metabolic syndrome (2006) Arq Bras Endocrinol Metab, 50 (2), pp. 177-189. , http://dx.doi.org/10.1590/S0004-27302006000200004
dc.descriptionSchäfer, S., Kantartzis, K., Machann, J., Venter, C., Niess, A., Schick, F., Lifestyle intervention in individuals with normal versus impaired glucose tolerance (2007) Eur J Clin Invest, 37 (7), pp. 535-543
dc.descriptionJohannsson, G., Mårin, P., Lönn, L., Ottosson, M., Stenlöf, K., Björntorp, P., Growth hormone treatment of abdominally obese men reduces abdominal fat mass, improves glucose and lipoprotein metabolism, and reduces diastolic blood pressure (1997) J Clin Endocrinol Metab, 82 (3), pp. 727-734. , http://dx.doi.org/10.1210/jcem.82.3.3809
dc.descriptionSchneider, H., Klotsche, J., Wittchen, H., Stalla, G., Schopohl, J., Kann, P., Effects of growth hormone replacement within the KIMS survey on estimated cardiovascular risk and predictors of risk reduction in patients with growth hormone deficiency (2011) Clin Endocrinol, 75 (6), pp. 825-830. , http://dx.doi.org/0.1111/j.1365-2265.2011.04137.x
dc.descriptionNagasaki, K., Tsumanuma, I., Yoneoka, Y., Jinguji, S., Ogawa, Y., Kikuchi, T., Metabolic effects of growth hormone replacement in two pediatric patients with growth without growth hormone (2010) Endocr J, 57 (9), pp. 771-775. , http://doi.org/10.1507/endocrj.K10E-180
dc.descriptionArafat, A.M., Möhlig, M., Weickert, M.O., Schöfl, C., Spranger, J., Pfeiffer, A.F., Improved insulin sensitivity, preserved beta cell function and improved wholebody glucose metabolism after low-dose growth hormone replacement therapy in adults with severe growth hormone deficiency: A pilot study (2010) Diabetologia, 53 (7), pp. 1304-1313. , http://doi.org/10.1007/s00125-010-1738-4
dc.descriptionDouyon, L., Schteingart, D.E., Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion (2002) Endocrinol Metab Clin North Am, 3 (1), pp. 173-189
dc.descriptionKumar, H.K., Yadav, R.K., Prajapati, J., Reddy, C.V., Raghunath, M., Modi, K.D., Association between thyroid hormones, insulin resistance, and metabolic syndrome (2009) Saudi Med J, 30 (7), pp. 907-911
dc.descriptionEstivalet, A.A., Leiria, L.B., Dora, J.M., Rheinheimer, J., Bouças, A.P., Maia, A.L., D2 Thr92Ala and PPARγ2 Pro12Ala polymorphisms interact in the modulation of insulin resistance in type 2 diabetic patients (2011) Obesity, 19 (4), pp. 825-832. , http://doi.org/10.1038/oby.2010.231
dc.descriptionNagai, N., Sakane, N., Kotani, K., Hamada, T., Tsuzaki, K., Moritani, T., Uncoupling protein 1 gene-3826 A/G polymorphism is associated with weight loss on a short-term, controlled-energy diet in young women (2011) Nutr Res, 31 (4), pp. 255-261. , http://doi.org/10.1016/j.nutres.2011.03.010
dc.description
dc.description
dc.languageen
dc.publisherRevista de Nutricao
dc.relationRevista de Nutricao
dc.rightsfechado
dc.sourceScopus
dc.titlePolymorphism In The Sirt1 Gene And Parameters Of Metabolic Syndrome In A Sample Of The Adult Brazilian Population
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución