dc.date2015
dc.date2016-06-03T20:14:44Z
dc.date2016-06-03T20:14:44Z
dc.date.accessioned2018-03-29T01:33:26Z
dc.date.available2018-03-29T01:33:26Z
dc.identifier
dc.identifierQuarterly Of Applied Mathematics. American Mathematical Society, v. 73, n. 2, p. 253 - 264, 2015.
dc.identifier0033569X
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84930857109&partnerID=40&md5=2e65c7ee229d831610b9b75367f6ece3
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/238266
dc.identifier2-s2.0-84930857109
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1304927
dc.descriptionIn this paper we study global-in-time existence for the Cauchy problem associated to the Schrödinger-Debye system for a class of initial data with infinite L2- norm, namely weak-Lp spaces. This model appears in nonlinear optics as a perturbation of the classical nonlinear Schrödinger equation (NLS). Our results exhibit differences between both models in that setting, e.g. the Debye perturbation imposes restrictions in the spatial dimension. We also analyze the asymptotic stability of the solutions. © 2015 Brown University.
dc.description73
dc.description2
dc.description253
dc.description264
dc.descriptionArbieto, A., Matheus, C., On the periodic Schrödinger-Debye equation (2008) Commun. Pure Appl. Anal., 7 (3), pp. 699-713
dc.descriptionBennett, C., Sharpley, R., (1988) Interpolation of operators, 129. , Pure and Applied Mathematics, Academic Press Inc., Boston, MA
dc.descriptionBraz, P., Silva, Ferreira, L.C.F., Villamizar-Roa, E.J., On the existence of infinite energy solutions for nonlinear Schrödinger equations (2009) Proc. Amer. Math. Soc., 137 (6), pp. 1977-1987
dc.descriptionBidégaray, B., On the Cauchy problem for some systems occurring in nonlinear optics (1998) Adv. Differential Equations, 3 (3), pp. 473-496
dc.descriptionBidégaray, B., The Cauchy problem for Schrödinger-Debye equations (2000) Math. Models Methods Appl. Sci., 10 (3), pp. 307-315
dc.descriptionCazenave, T., Weissler, F.B., Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations (1998) Math. Z., 228 (1), pp. 83-120
dc.descriptionCorcho, A.J., Linares, F., (2004) Well-posedness for the Schrödinger-Debye equation, 362, pp. 113-131. , Partial differential equations and inverse problems, Contemp. Math., Amer. Math. Soc., Providence, RI
dc.descriptionCorcho, A.J., Matheus, C., Sharp bilinear estimates and well posedness for the 1-D Schrödinger-Debye system (2009) Differential Integral Equations, 22 (3-4), pp. 357-391
dc.descriptionCorcho, A.J., Oliveira, F., Silva, J.D., Local and global well-posedness for the critical Schrödinger- Debye system (2013) Proc. Amer. Math. Soc., 141 (10), pp. 3485-3499
dc.descriptionFerreira, L.C.F., Existence and scattering theory for Boussinesq type equations with singular data (2011) J. Differential Equations, 250 (5), pp. 2372-2388
dc.descriptionKato, T., Fujita, H., On the nonstationary Navier-Stokes system (1962) Rend. Sem. Mat. Univ. Padova, 32, pp. 243-260
dc.descriptionNewell, A.C., Moloney, J.V., (1992) Nonlinear optics, , Advanced Topics in the Interdisciplinary Mathematical Sciences, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA
dc.description
dc.description
dc.languageen
dc.publisherAmerican Mathematical Society
dc.relationQuarterly of Applied Mathematics
dc.rightsfechado
dc.sourceScopus
dc.titleGlobal Existence For Schrödinger-debye System For Initial Data With Infinite L2-norm
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución