dc.date | 2015 | |
dc.date | 2016-06-03T20:14:44Z | |
dc.date | 2016-06-03T20:14:44Z | |
dc.date.accessioned | 2018-03-29T01:33:26Z | |
dc.date.available | 2018-03-29T01:33:26Z | |
dc.identifier | | |
dc.identifier | Quarterly Of Applied Mathematics. American Mathematical Society, v. 73, n. 2, p. 253 - 264, 2015. | |
dc.identifier | 0033569X | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84930857109&partnerID=40&md5=2e65c7ee229d831610b9b75367f6ece3 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/238266 | |
dc.identifier | 2-s2.0-84930857109 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1304927 | |
dc.description | In this paper we study global-in-time existence for the Cauchy problem associated to the Schrödinger-Debye system for a class of initial data with infinite L2- norm, namely weak-Lp spaces. This model appears in nonlinear optics as a perturbation of the classical nonlinear Schrödinger equation (NLS). Our results exhibit differences between both models in that setting, e.g. the Debye perturbation imposes restrictions in the spatial dimension. We also analyze the asymptotic stability of the solutions. © 2015 Brown University. | |
dc.description | 73 | |
dc.description | 2 | |
dc.description | 253 | |
dc.description | 264 | |
dc.description | Arbieto, A., Matheus, C., On the periodic Schrödinger-Debye equation (2008) Commun. Pure Appl. Anal., 7 (3), pp. 699-713 | |
dc.description | Bennett, C., Sharpley, R., (1988) Interpolation of operators, 129. , Pure and Applied Mathematics, Academic Press Inc., Boston, MA | |
dc.description | Braz, P., Silva, Ferreira, L.C.F., Villamizar-Roa, E.J., On the existence of infinite energy solutions for nonlinear Schrödinger equations (2009) Proc. Amer. Math. Soc., 137 (6), pp. 1977-1987 | |
dc.description | Bidégaray, B., On the Cauchy problem for some systems occurring in nonlinear optics (1998) Adv. Differential Equations, 3 (3), pp. 473-496 | |
dc.description | Bidégaray, B., The Cauchy problem for Schrödinger-Debye equations (2000) Math. Models Methods Appl. Sci., 10 (3), pp. 307-315 | |
dc.description | Cazenave, T., Weissler, F.B., Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations (1998) Math. Z., 228 (1), pp. 83-120 | |
dc.description | Corcho, A.J., Linares, F., (2004) Well-posedness for the Schrödinger-Debye equation, 362, pp. 113-131. , Partial differential equations and inverse problems, Contemp. Math., Amer. Math. Soc., Providence, RI | |
dc.description | Corcho, A.J., Matheus, C., Sharp bilinear estimates and well posedness for the 1-D Schrödinger-Debye system (2009) Differential Integral Equations, 22 (3-4), pp. 357-391 | |
dc.description | Corcho, A.J., Oliveira, F., Silva, J.D., Local and global well-posedness for the critical Schrödinger- Debye system (2013) Proc. Amer. Math. Soc., 141 (10), pp. 3485-3499 | |
dc.description | Ferreira, L.C.F., Existence and scattering theory for Boussinesq type equations with singular data (2011) J. Differential Equations, 250 (5), pp. 2372-2388 | |
dc.description | Kato, T., Fujita, H., On the nonstationary Navier-Stokes system (1962) Rend. Sem. Mat. Univ. Padova, 32, pp. 243-260 | |
dc.description | Newell, A.C., Moloney, J.V., (1992) Nonlinear optics, , Advanced Topics in the Interdisciplinary Mathematical Sciences, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | American Mathematical Society | |
dc.relation | Quarterly of Applied Mathematics | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Global Existence For Schrödinger-debye System For Initial Data With Infinite L2-norm | |
dc.type | Artículos de revistas | |