dc.date2015
dc.date2016-06-03T20:14:41Z
dc.date2016-06-03T20:14:41Z
dc.date.accessioned2018-03-29T01:33:23Z
dc.date.available2018-03-29T01:33:23Z
dc.identifier9781628417135
dc.identifierProceedings Of Spie - The International Society For Optical Engineering. Spie, v. 9547, p. , 2015.
dc.identifier0277786X
dc.identifier10.1117/12.2190421
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84951772414&partnerID=40&md5=59b2ecb5d8392df02876b1c8c92e4c2f
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/238253
dc.identifier2-s2.0-84951772414
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1304914
dc.descriptionIn recent years, nickel nanoparticles (NPs) have increased scientific interest because of their extensive prospects in catalysts, information storage, large-scale batteries and biomedicine. Several works on Ni NPs generation by laser ablation have appeared in the literature in the last years, using different pulsed laser regimes and different media have been published recently. In this work we analyze the characteristics of species, structure (bare core or core-shell), configuration and size distribution of NPs generated by fs pulse laser ablation over a Ni solid target in n-heptane and water. We explore the presence of NiO-Ni core-shell and hollow Ni (or air-Ni) NPs in the colloids obtained. These were experimentally characterized using AFM and TEM microscopy, as well as Optical Extinction Spectroscopy (OES). Extinction spectra were modeled using Mie theory through an appropriate modification of the complex experimental dielectric function, taking into account a size-dependent corrective term for each free and bound electron contribution. Experimental UVvisible-NIR spectra were reproduced considering a size distribution of bare core, hollow and core-shell structures NPs. In both media, Ni NPs shape and size distribution agrees with that derived from TEM and AFM analysis. © 2015 SPIE.
dc.description9547
dc.description
dc.description
dc.description
dc.descriptionChen, C.-C., Herhold, A.B., Johnson, C.S., Alivisatos, A.P., Size dependence of structural metastability in semiconductor nanocrystals (1997) Science, 276, pp. 398-401
dc.descriptionAndrade, A.L., Valente, M.A., Ferreira, J.M.F., Fabris, J.D., Preparation of size-controlled nanoparticles of magnetite (2012) J. Magn. Magn. Mater., 324, pp. 1753-1757
dc.descriptionHou, Y., Gao, S., Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties (2003) J. Mater. Chem., 13, pp. 1510-1512
dc.descriptionSun, S., Murray, C.B., Weller, D., Folks, L., Moser, A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices (2000) Science, 287, pp. 1989-1992
dc.descriptionBeecroft, L.L., Ober, C.K., Nanocomposite materials for optical applications (1997) Chem. Mater., 9, pp. 1302-1317
dc.descriptionCouto, G.G., Klein, J.J., Schreiner, W.H., Mosca, D.H., De Oliveira, A.J.A., Zarbin, A.J.G., Nickel nanoparticles obtained by a modified polyol process: Synthesis, characterization, and magnetic properties (2007) J. Colloid Interface Sci., 311, pp. 461-468
dc.descriptionRamírez-Meneses, E., Betancourt, I., Morales, F., Montiel-Palma, V., Villanueva-Alvarado, C.C., Hernández-Rojas, M.E., Superparamagnetic nickel nanoparticles obtained by an organometallic approach (2011) J. Nanopart. Res., 13, pp. 365-374
dc.descriptionCheng, J., Zhang, X., Ye, Y., Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes (2006) J. Solid State Chem., 179, pp. 91-95
dc.descriptionPark, J., Kang, E., Son, S.U., Park, H.M., Lee, M.K., Kim, J., Kim, K.W., Hyeon, T., Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the suzuki coupling reaction (2005) Adv. Mater., 17, pp. 429-434
dc.descriptionXu, R., Xie, T., Zhao, Y., Li, Y., Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobalt nanoparticles (2007) Nanotechnology, 18, pp. 055602-055605
dc.descriptionMurugadoss, G., Rajesh Kumar, M., Synthesis and optical properties of monodispersed Ni2+-doped ZnS nanoparticles (2014) Appl. Nanosci., 4, pp. 67-75
dc.descriptionRodríguez-Llamazares, S., Merchán, J., Olmedo, I., Marambio, H.P., Muñoz, J.P., Jara, P., Sturm, J.C., Kogan, M.J., Ni/Ni oxides nanoparticles with potential biomedical applications obtained by displacement of a nickel-organometallic complex (2008) J. Nanosci. Nanotechnol., 8, pp. 3820-3827
dc.descriptionDudoitis, V., Ulevičius, V., Račiukaitis, G., Špirkauskaite, N., Plauškaite, K., Generation of metal nanoparticles by laser ablation (2011) Lithuanian J. Phys., 51, pp. 248-259
dc.descriptionAmoruso, S., Bruzzese, R., Wang, X., Nedialkov, N.N., Atanasov, P.A., Femtosecond laser ablation of nickel in vacuum (2007) J. Phys. D: Appl. Phys., 40, pp. 331-340
dc.descriptionJaleh, B., Torkamany, M.J., Golbedaghi, R., Noroozi, M., Habibi, S., Samavat, F., Jaberian Hamedan, V., Albeheshti, L., Preparation of Nickel Nanoparticles via Laser Ablation in Liquid and Simultaneously Spectroscopy (2012) Adv. Mater. Res., 403, pp. 4440-4444
dc.descriptionMusaev, O.R., Yan, J., Dusevich, V., Wrobel, J.M., Ni, B.K.M., Nanoparticles fabricated by laser ablation in water (2014) Appl. Phys. A, 116, pp. 735-739
dc.descriptionBohren, C.F., Huffmanm, D.R., (1998) Absorption and Scattering of Light by Small Particles, , Wiley, New York
dc.descriptionRakić, A.D., Djurišic, A.B., Elazar, J.M., Majewski, M.L., Optical properties of metallic films for vertical-cavity optoelectronic devices (1998) Appl. Opt., 37, pp. 5271-5283
dc.descriptionKreibig, U., Vollmer, M., (1995) Optical Properties of Metal Clusters, , Springer, Berlin
dc.descriptionPetrovykh, D.Y., Altmann, K.N., Hochst, H., Laubscher, M., Maat, S., Mankey, G.J., Himpse, F.J., Spin-dependent band structure, fermi surface, and carrier lifetime of permalloy (1998) Appl. Phys. Lett., 73, pp. 3459-3461
dc.descriptionScaffardi, L.B., Tocho, J.O., Size dependence of refractive index of Gold Nanoparticles (2006) Nanotechnology, 17, pp. 1309-1315
dc.descriptionMendoza Herrera, L.J., Muñetón Arboleda, D., Schinca, D.C., Scaffardi, L.B., Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles (2014) J. Appl. Phys., 116, pp. 233105-233108
dc.descriptionLiu, B., Hu, Z., Che, Y., Chen, Y., Pan, X., Nanoparticle generation in ultrafast pulsed laser ablation of nickel (2007) Appl. Phys. Lett., 90, pp. 044103-044113
dc.descriptionKhan, S.Z., Yuan, Y., Abdolvand, A., Schmidt, M., Crouse, P., Li, L., Liu, Z., Watkins, K.G., Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid (2009) J. Nanopart. Res., 11, pp. 1421-1427
dc.descriptionPlasmonics: Metallic Nanostructures and Their Optical Properties XIII
dc.description9 August 2015 through 13 August 2015
dc.languageen
dc.publisherSPIE
dc.relationProceedings of SPIE - The International Society for Optical Engineering
dc.rightsaberto
dc.sourceScopus
dc.titleStructure, Configuration, And Sizing Of Ni Nanoparticles Generated By Ultrafast Laser Ablation In Different Media
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución