dc.date | 2016 | |
dc.date | 2016-06-03T20:14:32Z | |
dc.date | 2016-06-03T20:14:32Z | |
dc.date.accessioned | 2018-03-29T01:33:17Z | |
dc.date.available | 2018-03-29T01:33:17Z | |
dc.identifier | | |
dc.identifier | Physics Of Fluids. American Institute Of Physics Inc., v. 28, n. 1, p. , 2016. | |
dc.identifier | 10706631 | |
dc.identifier | 10.1063/1.4938402 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84954286608&partnerID=40&md5=735811bf1ca120bbdf2f58f6e6f8e53d | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/238226 | |
dc.identifier | 2-s2.0-84954286608 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1304887 | |
dc.description | The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ~100 MPa) conducting outer layer with a surface conductivity of ~10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow. © 2016 AIP Publishing LLC. | |
dc.description | 28 | |
dc.description | 1 | |
dc.description | | |
dc.description | | |
dc.description | Wei, J., Shui, W., Zhou, F., Lu, Y., Chen, K., Xu, G., Yang, P., 'Naturally and externally pulsed electrospray' (2002) Mass Spectrom. Rev, 21, pp. 148-162 | |
dc.description | Gunji, M., Washizu, M., 'Self-propulsion of a water droplet in an electric field' (2005) J. Phys. D: Appl. Phys, 38, pp. 2417-2423 | |
dc.description | Teschke, O., Soares, D.M., Valente Filho, J.F., 'Floating liquid bridge tensile behavior: Electric-field-induced Young's modulus measurements' (2013) Appl. Phys. Lett, 103 | |
dc.description | Fuchs, E.C., Woisetschlager, J., Gatterer, K., Maier, E., Pecnik, R., Holler, G., Eisenkolbl, H., 'The floating water bridge' (2007) J. Phys. D: Appl. Phys, 40, pp. 6112-6115 | |
dc.description | Woisetschlager, J., Wexler, A.D., Holler, G., Eisenhut, M., Gatterer, K., Fuchs, E.C., 'Horizontal bridges in polar dielectric liquids' (2012) Exp. Fluids, 52, pp. 193-205 | |
dc.description | Fuchs, E.C., Baroni, P., Bitschnau, B., Noirez, L., 'Two-dimensional neutron scattering in a floating heavy water bridge' (2010) J. Phys. D: Appl. Phys, 43 | |
dc.description | Ponterio, R.C., Pochylski, M., Aliotta, F., Vasi, C., Fontanella, M.E., Saija, F., 'Raman scattering measurements on a floating water bridge' (2010) J. Phys. D: Appl. Phys, 43 | |
dc.description | Marin, A.G., Lohse, D., 'Building water bridges in air: Electrohydrodynamics of the floating water bridge' (2010) Phys. Fluids, 22 | |
dc.description | Ganan-Calvo, A.M., 'On the theory of electrohydrodynamically driven capillary jets' (1997) J. Fluid Mech, 335, pp. 165-188 | |
dc.description | Eggers, J., 'Universal pinching of 3D axisymmetric free-surface flow' (1993) Phys. Rev. Lett, 71, pp. 3458-3460 | |
dc.description | Eggers, J., 'Nonlinear dynamics and breakup of free-surface flows' (1997) Rev. Mod. Phys, 69, pp. 865-929 | |
dc.description | Melchert, J.R., Taylor, G.I., 'Electrohydrodynamics: A review of the role of interfacial shear stresses' (1969) Annu. Rev. Fluid Mech, 1, pp. 111-146 | |
dc.description | Muller, F.H., 'Dielektrische polarisation von flussigkeiten in ungleichformigem felde' (1938) Wiss. Veroffentl. Siemens-Werken, 177, pp. 20-37 | |
dc.description | Pohl, H.A., 'The motion and precipitation of suspensoids in divergent electric fields' (1951) J. Appl. Phys, 22, pp. 869-871 | |
dc.description | Loesche, A., Hultschig, H., 'Dielektrophorese in flussigkeiten' (1955) Kolloid-Z, 141, pp. 177-187 | |
dc.description | MacGregor, W.S., 'The chemical and physical properties of DMSO' (1967) Ann. N. Y. Acad. Sci, 141, pp. 3-12 | |
dc.description | Mott, N.F., Gurney, R.W., (1940) Electronic Processes in Ionic Crystals, , (Oxford University Press, London) | |
dc.description | Schlafer, H.L., Schaffernicht, W., 'Dimethylsulphoxide as a solvent for inorganic compounds' (1960) Angew. Chem, 72, pp. 618-626 | |
dc.description | Perez-Casas, C., Yatsimirsky, A.K., 'Detailing hydrogen bonding and deprotonation equilibria between anions and urea/thiourea derivatives' (2008) J. Org. Chem, 73, pp. 2275-2284 | |
dc.description | Sammer, M., Wexler, A.D., Kuntke, P., Wiltsche, H., Stanulewicz, N., Lankmayr, E., Woisetschlager, J., Fuchs, E.C., 'Proton production, neutralization and reduction in a floating water bridge' (2015) J. Phys. D: Appl. Phys, 48 | |
dc.description | Lide, D.R., (1997) CRC Handbook of Chemistry and Physics, , 78th ed. (CRC Press, New York), Section 6-135 | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | American Institute of Physics Inc. | |
dc.relation | Physics of Fluids | |
dc.rights | embargo | |
dc.source | Scopus | |
dc.title | Floating Liquid Bridge Charge Dynamics | |
dc.type | Artículos de revistas | |