Artículos de revistas
A Projected Gradient Method For Optimization Over Density Matrices
Registro en:
Optimization Methods And Software. Taylor And Francis Ltd., v. 31, n. 2, p. 328 - 341, 2016.
10556788
10.1080/10556788.2015.1082105
2-s2.0-84955679443
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) An ensemble of quantum states can be described by a Hermitian, positive semidefinite and unit trace matrix called density matrix. Thus, the study of methods for optimizing a certain function (energy, entropy) over the set of density matrices has a direct application to important problems in quantum information and computation. We propose a projected gradient method for solving such problems. By exploiting the geometry of the feasible set, which is the intersection of the cone of Hermitian positive semidefinite matrices with the hyperplane defined by the unit trace constraint, we describe an efficient procedure to compute the projection onto this set using the Frobenius norm. Some important applications, such as quantum state tomography, are described and numerical experiments illustrate the effectiveness of the method when compared to previous methods based on fixed-point iterations or semidefinite programming. © 2015 Taylor & Francis. 31 2 328 341 CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Sorensen, D., (1999) LAPACK Users' Guide, , 3rd ed., SIAM, Philadelphia, PA Barzilai, J., Borwein, J.M., Two-point step size gradient methods (1988) IMA J. Numer. Anal, 8, pp. 141-148 Bertsekas, D., (1999) Nonlinear Programming, , 2nd ed., Athena Scientific Bertsekas, D., Nedic, A., Ozdaglar, A.E., (2003) Convex Analysis and Optimization, , Athena Scientific, Belmont Birgin, E.G., Martínez, J.M., (2014) Augmented Lagrangian Methods for Constrained Optimization, , SIAM, Philadelphia, PA Birgin, E.G., Martínez, J.M., Raydan, M., Nonmonotone spectral projected gradient methods on convex sets (2000) SIAM J. Optimiz, 10, pp. 1196-1211 Birgin, E.G., Martínez, J.M., Raydan, M., Inexact spectral projected gradient methods on convex sets (2003) IMA J. Numer. Anal, 23, pp. 539-559 Boyd, S., Vandenberghe, L., (2004) Convex Optimization, , Cambridge University Press, New York Boyle, J.P., Dykstra, R.L., A method for finding projections onto the intersection of convex sets in Hilbert spaces (1986) Lecture Notes in Statistics, 37, pp. 28-47 Brandão, F.G.S.L., Vianna, R.O., Robust semidefinite programming approach to the separability problem (2004) Phys. Rev. A, 70 Buzek, V., Drobny, G., Derka, R., Adam, G., Wiedemann, H., Quantum state reconstruction from incomplete data (1999) Chaos Solitons Fractals, 10, pp. 981-1074 Causa, A., Raciti, F., A purely geometric approach to the problem of computing the projection of a point on a simplex (2013) J. Optimiz. Theory Appl., 156, pp. 524-528 Cuppen, J.J.M., A divide and conquer method for the symmetric tridiagonal eigenproblem (1980) Numer. Math., 36, pp. 177-195 Demmel, J., (1997) Applied Numerical Linear Algebra, , SIAM, Philadelphia Doherty, A.C., Parrilo, P.A., Spedalieri, F.M., Distinguishing separable and entangled states (2002) Phys. Rev. Lett., 88 Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T., Efficient projections onto the l1 -ball for Learning in High Dimensions (2008) Proceedings of the 25th International Conference on Machine Learning, ICML '08, pp. 272-279. , Helsinki, Finland, ACM Glancy, S., Knill, E., Girard, M., Gradient-based stopping rules for maximum-likelihood quantum-state tomography (2012) New J. Phys., 14 Golub, G., Van Loan, C., (1996) Matrix Computations, , 3rd ed., Johns Hopkins University Press, Baltimore Gómez, W., Ramírez, H., A filter algorithm for nonlinear semidefinite programming (2010) Comput. Appl. Math., 29, pp. 297-328 Gonçalves, D.S., Gomes-Ruggiero, M.A., Lavor, C., Global convergence of diluted iterations in maximum-likelihood quantum tomography (2014) Quant. Inf. Comput, 14, pp. 966-980 Gonçalves, D.S., Lavor, C., Gomes-Ruggiero, M.A., Cesário, A.T., Vianna, R.O., Maciel, T.O., Quantum state tomography with incomplete data: Maximum entropy and variational quantum tomography (2013) Phys. Rev. A, 87 Grippo, L., Lampariello, F., Lucidi, S., A nonmonotone line search technique for Newton's method (1986) SIAM J. Numer. Anal, 23, pp. 707-716 Gu, M., Eisenstat, S.C., A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem (1995) SIAM J. Matrix Anal. Appl., 16, pp. 172-191 Horodecki, M., Horodecki, P., Horodecki, R., Separability of mixed states: Necessary and sufficient conditions (1996) Phys. Lett. A, 223, pp. 1-8 Hradil, Z., Quantum-state estimation (1997) Phys. Rev. A, 55, pp. R1561-R1564 Hradil, Z., Řeháček, J., Fiurášek, J., Ježek, M., Maximum-likelihood methods in quantum mechanics (2004) Lecture Notes in Physics, 649, pp. 163-172. , Quantum State Estimation, Springer, Berlin, Heidelberg Jarre, F., An interior method for nonconvex semidefinite programs (2000) Optim. Eng., 1, pp. 347-372 De Klerk, E., (2002) Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, , Kluwer Academic Publishers, Dordrecht Kočvara, M., Stingl, M., Pennon: A code for convex nonlinear and semidefinite programming (2003) Optim. Methods Softw, 18, pp. 317-333 Maciel, T.O., Vianna, R.O., Optimal estimation of quantum processes using incomplete information: Variational quantum process tomography (2012) Quantum Inf. Comput, 12, pp. 442-447 Meyer, C., (2001) Matrix Analysis and Applied Linear Algebra, , SIAM, Philadelphia Michelot, C., A finite algorithm for finding the projection of a point onto the canonical simplex of ℝn (1986) J. Optimiz. Theory Appl., 50, pp. 195-200 Von Neumann, J., Functional Operators Vol. II. The Geometry of Orthogonal Spaces (1950) Annals of Mathematical Studies, 22. , Princeton University Press, Princeton Nielsen, M., Chuang, I., Quantum Computation and Quantum Information (2004) Cambridge Series on Information and the Natural Sciences, , Cambridge University Press, Cambridge Nocedal, J., Wright, S.J., (1999) Numerical Optimization, , Springer-Verlag, New York Paris, M., Rehácek, J., Quantum State Estimation (2004) Lecture Notes in Physics, 649. , Springer, Berlin, Heidelberg Peres, A., Separability criterion for density matrices (1996) Phys. Rev. Lett., 77, pp. 1413-1415 Raydan, M., On the Barzilai and Borwein choice of steplength for the gradient method (1993) IMA J. Numer. Anal, 13, pp. 321-326 Rehacek, J., Hradil, Z., Maximum Entropy Assisted Maximum Likelihood Inversion (2005) Conference on Lasers and Electro-Optics Europe, 2005 (CLEO/Europe 2005), p. 466 Řeháček, J., Hradil, Z., Knill, E., Lvovsky, A.I., Diluted maximum-likelihood algorithm for quantum tomography (2007) Phys. Rev. A, 75 Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M., Symmetric informationally complete quantum measurements (2004) J. Math. Phys., 45, pp. 2171-2180 Rockafellar, R.T., (1970) Convex Analysis, , Princeton University Press, Princeton Sturm, J.F., (1998) Using SeDuMi 1.02, A Matlab Toolbox for Optimization Over Symmetric Cones Teo, Y.S., Stoklasa, B., Englert, B.G., Rehacek, J., Hradil, Z., Incomplete quantum state estimation: A comprehensive study (2012) Phys. Rev. A, 85 Todd, M., Semidefinite optimization (2001) Acta Numer., 10, pp. 515-560 Toh, K., Todd, M., Tutuncu, R., SDPT3 - A Matlab software package for semidefinite programming (1999) Optim. Methods Softw, pp. 545-581 Toh, K.C., An inexact primal-dual path following algorithm for convex quadratic SDP (2008) Math. Program, 112, pp. 221-254 Toh, K.C., Tucuntu, R.H., Todd, M.J., Inexact primal-dual path-following algorithms for a special class of convex quadratic sdp and related problems (2007) Pac. J. Optim, 3, pp. 135-164 Vandenberghe, L., Boyd, S., Semidefinite programming (1996) SIAM Rev., 38, pp. 49-95 Wolfe, P., Finding the nearest point in a polytope (1976) Math. Program, 11, pp. 128-149 Yamashita, H., Yabe, H., Harada, K., A primal-dual interior point method for nonlinear semidefinite programming (2012) Math. Program, 135, pp. 89-121 Zhang, H., Hager, W.W., A nonmonotone line search technique and its application to unconstrained optimization (2004) SIAM J. Optimiz, 14, pp. 1043-1056 Zyczkowski, K., Bengtsson, I., (2006) Geometry of Quantum States, , Cambridge University Press, New York Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M., Volume of the set of separable states (1998) Phys. Rev. A, 58, pp. 883-892 Zyczkowski, K., Penson, K.A., Nechita, I., Collins, B., Generating random density matrices (2011) J. Math. Phys., 52