dc.date | 2015 | |
dc.date | 2016-06-03T20:13:56Z | |
dc.date | 2016-06-03T20:13:56Z | |
dc.date.accessioned | 2018-03-29T01:32:56Z | |
dc.date.available | 2018-03-29T01:32:56Z | |
dc.identifier | | |
dc.identifier | Omics A Journal Of Integrative Biology. Mary Ann Liebert Inc., v. 19, n. 5, p. 318 - 327, 2015. | |
dc.identifier | 15362310 | |
dc.identifier | 10.1089/omi.2015.0009 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84929072444&partnerID=40&md5=fec698bc7a9cab19a81e0e227e8039fe | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/238141 | |
dc.identifier | 2-s2.0-84929072444 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1304802 | |
dc.description | Excessive body fat and obesity have adverse health effects and result in significant morbidity such as type 2 diabetes mellitus. The health burden of obesity can be reduced with the Roux-en-Y gastric bypass (RYGB) weight-loss bariatric surgery. Little is known on the molecular changes that occur at the metabolome level before and after bariatric surgery, with a view to clinical biomarker development. Hence, we employed a metabolomics approach in 10 obese diabetic patients who underwent bariatric surgery. Metabolomics data were obtained by T<inf>2</inf>- and diffusion-edited hydrogen nuclear magnetic resonance (1H NMR) spectra to monitor the metabolic and lipoprotein profiles, and gas chromatography-mass spectrometry (CG-MS) to access the fatty acid profile before and 12 months after RYGB. Using hierarchical partial least squares discriminant analysis, we found that RYGB induces several key metabolic alterations associated with glucose homeostasis, as well as fatty acid and amino acid metabolism. The levels of lactate (Krebs' intermediate cycle) decreased after RYGB. The leucine, isoleucine, valine, lactate, and glucose levels were higher in the samples before RYGB (p<0.05). Additionally, the levels of very low-density lipoprotein, unsaturated lipids, and N-acetyl-glycoprotein were higher before RYGB. By contrast, levels of the high-density lipoprotein and phosphatidylcholine were higher after bariatric surgery. These results collectively offer important holistic integrative biology data to develop future clinically relevant metabolomics biomarkers related to bariatric surgery in connection with obesity. © 2015, Mary Ann Liebert, Inc. | |
dc.description | 19 | |
dc.description | 5 | |
dc.description | 318 | |
dc.description | 327 | |
dc.description | Adams, T.D., Gress, R.E., Smith, S.C., Longer mortality after gastric bypass surgery (2007) N Engl J Med, 357, pp. 753-761 | |
dc.description | Ala-Korpela, M., Korhonen, A., Keisala, J., 1H NMRbased absolute quantitation of human lipoproteins and their lipid contents directly from plasma (1994) J Lipid Res, 35, pp. 2292-2304 | |
dc.description | Ala-Korpela, M., Lankinen, N., Salminen .A, The inherent accuracy of 1H NMR spectroscopy to quantify plasma lipoproteins is subclass dependent (2007) Atherosclerosis, 190, pp. 352-358 | |
dc.description | Ballabio, D., Consonni, V., Classification tools in chemistry Part 1: Linear models (2013) PLS-DA. Anal Methods, 5, pp. 3790-3798 | |
dc.description | Barron, J.T., Barany, M., Gu, L., Parrillo, J.E., Metabolic fate of glucose in vascular smooth muscle during contraction induced by noradrenaline (1998) J Mol Cell Cardiol, 30, pp. 709-719 | |
dc.description | Batch, B.C., Shah, S.H., Newgard, C.B., Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness (2013) Metabolism, 62, pp. 961-969 | |
dc.description | Bell, J.D., Brown, J.C., Nicholson, J.K., Sadler, P.J., Assignment of resonances for 'acute phase' glycoproteins in high resolution proton NMR spectra of human blood plasma (1987) FEBS Lett, 215, pp. 311-315 | |
dc.description | Buchwald, H., Estok, R., Fahrbach, K., Weight and type 2 diabetes after bariatric surgery: Systematic review and meta-analysis (2009) Am J Med, 122, pp. 248-256 | |
dc.description | Catalan, V., Gomez-Ambrosi, J., Ramirez, B., Proinflammatory cytokines in obesity: Impact of type 2 diabetes mellitus and gastric bypass (2007) Obesity Surg, 17, pp. 1464-1474 | |
dc.description | Croset, M., Brossard, N., Polette, A., Lagarde, M., Characterization of plasma unsaturated lysophosphatidylcholines in human and rat (2000) Biochem J, 345, pp. 61-67 | |
dc.description | Dandara, C., Huzair, F., Borda-Rodriguez, A., Chirikure, S., Okpechi, I., Warnich, L., Masimirembwa, C., H3Africa andthe African life sciences ecosystem: Building sustainable innovation (2014) OMICS, 18, pp. 733-739 | |
dc.description | Duarte, I.F., Goodfellow, B.J., Barros, A., Metabolic characterisation of plasma in juveniles with glycogen storage disease type 1a (GSD1a) by high-resolution 1H NMR spectroscopy (2007) NMR Biomed, 20, pp. 401-412 | |
dc.description | Dyrby, M., Petersen, M., Whittaker, A.K., Lambert, L., Nørgaard, L., Bro, R., Engelsen, S.B., Analysis of lipoproteins using 2D diffusion-edited NMR spectroscopy and multi-way chemometrics (2005) Anal Chim Acta, 531, pp. 209-216 | |
dc.description | Eriksson, L., Johansson, E., Lindgren, F., Sjöström, M., Wold, S., Megavariate analysis of hierarchical QSAR data (2002) J Computer-Aided Mol Design, 16, pp. 711-726 | |
dc.description | Friedrich, N., Budde, K., Wolf, T., Short-term changes of the urine metabolome after bariatric surgery (2012) OMICS, 16, pp. 612-620 | |
dc.description | Folch, J., Lees, M., Stanley, G.H.S., A simple method for the isolation and purification of total lipids from animal tissues (1957) J Biol Chem, 226, pp. 497-509 | |
dc.description | Geloneze, B., Tambascia, M.A., Pareja, J.C., Repetto, E.M., Magna, L.A., The insulin tolerance test in morbidly obese patients undergoing bariatric surgery (2001) Obesity Res, 9, pp. 763-769 | |
dc.description | Iverson, S.J., Lang, S.L.C., Cooper, M.H., Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue (2001) Lipids, 36, pp. 1283-1287 | |
dc.description | Jung, J.Y., Kim, I.Y., Kim, Y.N., 1H NMR-based metabolite profiling of diet-induced obesity in a mouse mode (2012) BMB Rep, 45, pp. 419-424 | |
dc.description | Khoo, C.M., Muehlbauer, M.J., Stevens, R.D., Pamuklar, Z., Chen, J., Newgard, C.B., Torquati, A., Postprandial metabolite profiles reveal differential nutrient handling after bariatric surgery compared with matched caloric restriction (2013) Ann Surg, 19, pp. 1-5 | |
dc.description | King, I.B., Lemaitre, R.N., Kestin, M., Effect of a lowfat diet on fatty acid composition in red cells, plasma phospholipids, and cholesterol esters: Investigation of a biomarker of total fat intake (2006) Am J Clin Nutr, 83, pp. 227-236 | |
dc.description | Laferrère, B., Reilly, D., Arias, S., Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic individuals despite identical weight loss (2011) Sci Translat Med, 3, pp. 80-82 | |
dc.description | Layman, D.K., Baum, J.I., Dietary protein impact on glycemic control during weight loss (2004) J Nutr, 134, pp. 968S-973S | |
dc.description | Lima, M.M.O., Pareja, J.C., Alegre, S.M., Acute effect of Roux-En-Y gastric bypass on whole-body insulin sensitivity: A study with the euglycemic-hyperinsulinemic clamp (2010) J Clin Endocrinol Metab, 95, pp. 3871-3875 | |
dc.description | Lindon, J.C., Holmes, E., Nicholson, J.K., So what's the deal with metabonomics (2003) Anal Chem, 75, pp. 384-391 | |
dc.description | Lindon, J.C., Nicholson, J.K., Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics (2008) Ann Rev Anal Chem, 1, pp. 45-69 | |
dc.description | Lindqvist, A., Spe'gel, P., Ekelund, M., Mulder, H., Hedenbro, L.G.J., Wierup, N., Effects of ingestion routes on hormonal and metabolic profiles in gastric-bypassed humans (2013) J Clin Endocrinol Metab, 98, pp. 856-861 | |
dc.description | Liou, A.P., Paziuk, M., Luevano, J.M., Jr., Machineni, S., Turnbaugh, P.J., Kaplan, L.M., Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity (2013) Sci Translat Med, 5, pp. 1-11 | |
dc.description | Liu, M., Tang, H., Nicholson, J.K., Lindon, J.C., Use of 1H NMR-determined diffusion coefficients to characterize lipoprotein fractions in human blood plasma (2002) Magnet Reson Chem, 40, pp. S83-S88 | |
dc.description | Lopes, T.I.B., Rimland, C.A., Nagassaki, S., Geloneze, B., Marsaioli, A.J., A chemometric model applied to fatty acid determination in blood (2013) J Brazil Chem Soc, 24, pp. 1599-1605 | |
dc.description | Ludwig, C., Viant, M.R., Two-dimensional J-resolved NMR spectroscopy: Review of a key methodology in the metabolomics toolbox (2010) Phytochem Anal, 21, pp. 22-32 | |
dc.description | Marengo, E., Todeschini, R., A new algorithm for optimal, distance-based experimental design (1992) Chemomet Intelligent Lab Systems, 16, pp. 37-44 | |
dc.description | Morinigo, R., Lacy, A.M., Casamitjana, R., Delgado, S., Gomis, R., Vidal, J., GLP-1 and changes in glucose tolerance following gastric bypass surgery in morbidly obese Individuals (2006) Obesity Surg, 16, pp. 1594-1601 | |
dc.description | Morris, C., O'grada, C., Ryan, M., Roche, H.M., Gibney, M.J., Gibney, E.R., Brennan, L., The 1 relationship between BMI and metabolomics profiles: A focus on amino acids (2012) Proc Nutr Soc, 71, pp. 634-638 | |
dc.description | Muoio, D.M., Koves, T.R., Lipid-induced metabolic dysfunction in skeletal muscle (2007) Novartis Found Symp, 286, pp. 24-38 | |
dc.description | Mutch, D.M., Fuhrmann, J.C., Rein, D., Wiemer, J.C., Bouillot, J.L., Poitou, C., Clement, K., Metabolite profiling identifies candidate markers reflecting the clinical adaptations associated with roux-en-y gastric bypass surgery (2009) PLoS ONE, 4, pp. e7905-e7917 | |
dc.description | Newgard, C.B., An, J., Bain, J.R., Muehlbauer, M.J., Stevens, R.D., Lien, L.F., A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance (2009) Cell Metab, 9, pp. 311-326 | |
dc.description | Otvos, J.D., Jeyarajah, E.J., Bennett, D.W., Krauss, R.M., Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement (1992) Clin Chem, 38, pp. 1632-1638 | |
dc.description | Patti, G.J., Yanes, O., Siuzdak, G., Innovation: Metabolomics: The apogee of the omics trilogy (2012) Nature Rev Mol Cell Biol, 13, pp. 263-269 | |
dc.description | Petersen, M., Dyrby, M., Toubro, S., Engelsen, S.B., Norgaard, L., Pedersen, H.T., Dyerberg, J., Quantification of lipoprotein subclasses by proton nuclear magnetic resonance-based partial least-squares regression models (2005) Clin Chem, 51, pp. 1457-1461 | |
dc.description | Rodriguez, A.R., Reglero, G., Ibanez, E., Recent trends in the advanced analyses of bioactive fatty acids (2010) J Pharm Biomed Anal, 51, pp. 305-326 | |
dc.description | Savorani, F., Tomasi, G., Engelsen, S.B., Icoshift: A versatile tool for the rapid alignment of 1D NMR spectra (2010) J Magnet Reson, 202, pp. 190-202 | |
dc.description | Tiziani, S., Emwas, A.H., Lodi, A., Ludwig, C., Bunce, C.M., Viant, M.R., Gunther, U.L., Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy (2008) Anal Biochem, 377, pp. 16-23 | |
dc.description | Williams, D.B., Hagedorn, J.C., Lawson, E.H., Gastric bypass reduces biochemical cardiac risk factors (2007) Surg Obesity Related Dis, 3, pp. 8-13 | |
dc.description | Wishart, D.S., Quantitative metabolomics using NMR (2008) Trends Anal Chem, 27, pp. 228-237 | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | Mary Ann Liebert Inc. | |
dc.relation | OMICS A Journal of Integrative Biology | |
dc.rights | embargo | |
dc.source | Scopus | |
dc.title | Blood Metabolome Changes Before And After Bariatric Surgery: A 1h Nmr-based Clinical Investigation | |
dc.type | Artículos de revistas | |