dc.date | 2015 | |
dc.date | 2016-06-03T20:13:47Z | |
dc.date | 2016-06-03T20:13:47Z | |
dc.date.accessioned | 2018-03-29T01:32:52Z | |
dc.date.available | 2018-03-29T01:32:52Z | |
dc.identifier | 9783319140247; 9783319140230 | |
dc.identifier | Nanotechnologies In Food And Agriculture. Springer International Publishing, p. 183 - 207, 2015. | |
dc.identifier | | |
dc.identifier | 10.1007/978-3-319-14024-7_9 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84944245348&partnerID=40&md5=d31a97c168fa2816e0c231a5fc2844dc | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/238123 | |
dc.identifier | 2-s2.0-84944245348 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1304784 | |
dc.description | The endogenously found free radical nitric oxide (NO) has important roles in several aspects related to plant defense and growth. NO is a signaling messenger in animals and plants due to its particular chemistry, as uncharged and small molecule, relatively lipophilic. In recent year, important papers have been describing the advantages of using NO donors in agriculture. Indeed, administration of NO donors to plants is reported to stimulate plant greening and germination, control iron homeostasis, and improve plant tolerance to metal toxicity, salinity, drought stress, and high temperatures. Low molecular weight NO donors are known to be thermally and photochemically unstable, impairing their applications in agriculture. In this context, the combination of NO donors with nanomaterials has been emerging as a promising approach to optimize the beneficial effects of NO in plants. In spite that nanomaterials have been employed to carry agrochemicals in plants, the combination of NO donors and nanomaterials is yet not deeper explored in agriculture. In this scenario, this chapter highlights the advantages of applications of NO donors in plants, the uses of nanotechnology in agriculture, and the necessity to develop new strategies based on the combination of NO and nanomaterials in agriculture © Springer International Publishing Switzerland 2015. | |
dc.description | | |
dc.description | | |
dc.description | 183 | |
dc.description | 207 | |
dc.description | Aftab, T., Khan, M., Naeem, M., Idrees, M., Exogenous nitric oxide donor protects artemisia annua from oxidative stress generated by boron and aluminium toxicity (2012) Ecotoxicol Environ Saf, 80, pp. 60-68 | |
dc.description | Ahmed, F., Rodrigues, D.F., Investigation of acute effects of graphene oxide on wastewater microbial community: A case study (2013) J Hazard Mater, 256 (257), pp. 33-39 | |
dc.description | Alvarez-Puebla, R.A., Ross, D.J., Nazri, G.A., Aroca, R.F., Surface enhanced raman scattering on nanoshells with tunable surface plasmon resonance (2005) Langmuir, 21, pp. 10504-10508 | |
dc.description | Amadeu, T.P., Seabra, A.B., De Oliveira, M.G., Costa, A., S-nitrosoglutathione-containing hydrogel accelerates rat cutaneous wound repair (2007) J Eur Acad Dermatol Venereol, 21, pp. 629-637 | |
dc.description | Amadeu, T.P., Seabra, A.B., De Oliveira, M.G., Costa, A., Nitric oxide donor improves healing if applied on inflammatory and proliferative phase (2008) J Surg Res, 149, pp. 84-93 | |
dc.description | Antoniou, C., Filippou, P., Mylona, P., Fasoula, D., Loannides, L., Polidoros, A., Fotopoulos, V., Developmental stage- and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of medicago truncatula plants (2013) Plant Signal Behav, 8 (9), pp. e25479 | |
dc.description | Arc, E., Galland, M., Godin, B., Cueff, G., Rajjou, L., Nitric oxide implication in the control of seed dormancy and germination (2013) Front Plant Sci, 4, pp. 1-13. , Article 346 | |
dc.description | Barik, T.K., Sahu, B., Swain, V., Nanosilica—from medicine to pest control (2008) Parasitol Res, 103, pp. 253-258 | |
dc.description | Baudouin, E., The language of nitric oxide signaling (2011) Plant Biol, 13, pp. 233-242 | |
dc.description | Bavita, A., Shashi, B., Navtej, S.B., Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat (2012) Indian J Exp Biol, 50, pp. 372-378 | |
dc.description | Begum, P., Fugetsu, B., Induction of cell death by graphene in arabidopsis thaliana (Columbia ecotype) t87 cell suspensions (2013) J Hazard Mater, 260, pp. 1032-1041 | |
dc.description | Begum, P., Ikhtiari, R.I., Fugetsu, B., Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce (2011) Carbon, 49, pp. 3907-3919 | |
dc.description | Beligni, M.V., Lamattina, L., Nitric oxide stimulates seed germination and de-etiolation and inhibits hypocotyl elongation: Three light-inducible responses in plants (2000) Planta, 210, pp. 215-221 | |
dc.description | Benini, P., McGarvey, B.R., Franco, D.W., Functionalization of pamam dendrimers with [ru-iii(Edta)(h2o)](-) (2008) Nitric Oxide, 19, pp. 245-251 | |
dc.description | Besson-Bard, A., Pugin, A., Wendehenne, D., New insights into nitric oxide signaling in plants (2008) Annu Rev Plant Physiol, 59, pp. 21-40 | |
dc.description | Bewley, J.D., Seed germination and dormancy (1997) Plant Cell, 9, pp. 1055-1066 | |
dc.description | Canas, J.E., Long, M., Nations, S., Vadan, R., Dai, L., Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species (2008) Environ Toxicol Chem, 27, pp. 1922-1931 | |
dc.description | Carpenter, A.W., Schoenfisch, M.H., Nitric oxide release: Part ii. therapeutic applications (2012) Chem Soc Rev, 41, pp. 3742-3752 | |
dc.description | Chang, W.L., Shaily, M., Katherine, Z., Li, D., Yu-Chang, T., Developmental phytotoxicity of metal oxide nanoparticles to arabidopsis thaliana (2010) Environ Toxicol Chem, 29, pp. 669-675 | |
dc.description | Chen, K., Chen, L., Fan, J., Fu, J., Alleviation of heat damage to photosystem ii by nitric oxide in tal fescue (2013) Photosynth Res, 116, pp. 21-31 | |
dc.description | Collom, L., Emnanis, D., Wael, H., Anindya, G., Ruthenium complexes of amido macrocyclic ligands for no release (2008) 64Th Southwest Regional Meeting of the American Chemical Society, , Abstract | |
dc.description | Corpas, F.J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stres (2011) Plant Sc, 18, pp. 604-661 | |
dc.description | DalCorso, G., Manara, A., Furini, A., An overview of heavy metal challenge in plants: From roots to shoots (2013) Metallomics, 5, pp. 1117-1132 | |
dc.description | Dalvi, A.A., Bhalerao, S.A., Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism (2013) Ann Plant Sci, 2, pp. 362-368 | |
dc.description | Ding, F., Effects of salinity and nitric oxide donor sodium nitroprusside (Snp) on development and salt secretion of salt glands of limonium bicolor (2012) Acta Phys Plant | |
dc.description | Ditta, A., How helpful is nanotechnology in agriculture? (2012) Adv Nat Sci Nanosci Nanotechnol, p. 3. , 033002 | |
dc.description | Durán, N., Marcato, P.D., Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review (2013) Int J Food Sci Technol, 48, pp. 1127-1134 | |
dc.description | Durán, N., Marcato, P.D., De Conti, R., Alves, O.L., Costa, F., Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action (2010) J Braz Chem Soc, 21, pp. 949-959 | |
dc.description | Ederli, L., Reale, L., Madeo, L., Ferranti, F., Gehring, C., Formaciari, M., Romano, B., Pasqualini, S., No release by nitric oxide donors in vitro and in planta (2009) Plant Physiol Biochem, 47, pp. 42-48 | |
dc.description | El-Temsah, Y.S., Joner, E.J., Impact of fe and ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil (2010) Environ Toxicol, 27, pp. 42-49 | |
dc.description | Eva, J.G., Lesley, C.B., Jamie, R.L., Phytotoxicity of silver nanoparticles to lemna minor l (2011) Environ Pollut, 159, pp. 1551-1559 | |
dc.description | Fan, H.F., Du, C.X., Guo, S.R., Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content (2013) Environ Exp Bot, 86, pp. 52-59 | |
dc.description | Ferreira, L.C., Cataneo, A.C., Nitric oxide in plants: A brief discussion on this multifunctional molecule (2010) Sci Agric, 67, pp. 236-243 | |
dc.description | Fugetsu, B., Begum, P., Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce (2011) Carbon Nanotubes – from Research to Applications, , Dr. Stefano Biancoed, Chapter 10, InTech | |
dc.description | Gao, Q., Wang, G.J., Wan, A.J., Synthesis and characterization of chitosan-based diazeniumdiolates (2008) Polym Mater Sci Eng, 12, pp. 42-45 | |
dc.description | García-Mata, C., Lamattina, L., Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress (2001) Plant Physiol, 126, pp. 1196-1204 | |
dc.description | Gniazdowska, A., Krasuska, A., Czajkowska, K., Bogatek, R., Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings (2010) Plant Growth Regul, 61, pp. 75-84 | |
dc.description | Gogos, A., Knauer, K., Bucheli, T.D., Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities (2012) J Agric Food Chem, 60, pp. 9781-9792 | |
dc.description | Gomes, A.J., Barbougli, P.A., Espreafico, E.M., Tfouni, E., Trans-[ru(No)(nh3)(4)(py)](bf4)(3) center dot h2o encapsulated in plga microparticles for delivery of nitric oxide to b16–f10 cells: Cytotoxicity and phototoxicity (2008) J Inorg Biochem, 102, pp. 757-766 | |
dc.description | Gonzalez-Melendi, P., Fernandez-Pacheco, R., Coronado, M.J., Corredor, E., Testillano, P.S., Nanoparticles as smart treatment delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues (2008) Ann Bot, 101, pp. 187-195 | |
dc.description | Graziano, M., Beligni, M.V., Lamattina, L., Nitric oxide improves internal iron availability in plants (2002) Plant Physiol, 130, pp. 1852-1859 | |
dc.description | Grover, M., Singh, S.R., Venkateswarlu, B., Nanotechnology: Scope and limitations in agriculture (2012) Int J Nanotechnol Appl, 2, pp. 10-38 | |
dc.description | Gupta, K.J., Igamberdiev, A.U., Manjunatha, G., Segu, S., Moran, J.F., The emerging roles of nitric oxide (No) in plant mitochondria (2011) Plant Sci, 181, pp. 520-526 | |
dc.description | Gupta, K.J., Fernie, A.R., Kaiser, W.M., Van Dongen, J.T., On the origins of nitric oxide (2011) Trends Plant Sci, 16, pp. 160-168 | |
dc.description | Gupta, K.J., Hincha, D.K., Mur, L., No way to treat a cold (2011) New Phytol, 189, pp. 360-363 | |
dc.description | Habib, N., Ashraf, M., Shahbaz, M., Effect of exogenously applied nitric oxide on some key physiological attributes of rice (Oryza sativa l.) plants under salt stress (2013) Pak J Bot, 45, pp. 1563-1569 | |
dc.description | Hadadd, P.S., Seabra, A.B., Biomedical applications of magnetic nanoparticles (2012) Iron Oxides: Structure, Properties and Applications, pp. 165-188. , Gotsiridze-Columbus N, Nova, Nova York | |
dc.description | Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., Fujita, M., Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants (2013) Int J Mol Sci, 14, pp. 9643-9684 | |
dc.description | Hayes, R.T., Owen, D.J., Chauhan, A.S., Pulgam, V.R., Peham dendrimers for use in agriculture (2011) US Patent, 20 (110), p. 230. , 348 | |
dc.description | Hetrick, E.M., Shin, J.H., Stasko, N.A., Johnson, C.B., Wespe, D.A., Bactericidal efficacy of nitric oxide-releasing silica nanoparticles (2008) ACS Nano, 2, pp. 235-246 | |
dc.description | Holtz, R.D., Souza, A.G., Brocchi, M., Martins, D., Duran, N., Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent (2010) Nanotechnology, 21, p. 185102 | |
dc.description | Huang, S.L., Kee, P.H., Kim, H., Moody, M.R., Chrzanowski, S.M., Nitric oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia (2009) J am Coll Cardiol, 54, pp. 652-659 | |
dc.description | Ignarro, L.J., (2000) Nitric Oxide, Biology and Pathobiology, , Academic, San Diego | |
dc.description | Jastrzebska, A.M., Kurtycz, P., Olszyna, A.R., Recent advances in graphene family materials toxicity investigations (2012) J Nanopart Res, 14, p. 1320 | |
dc.description | Kaviani, M., Mortazavi, S.N., Effect of nitric oxide and thidiazuron on lilium cut flowers during postharvest (2013) Int J Agron Plant Prod, 4, pp. 64-669 | |
dc.description | Khan, M.N., Siddiqui, M.H., Mohammad, F., Naeem, M., Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress (2012) Nitric Oxide, 27, pp. 210-218 | |
dc.description | Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z.R., Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth (2009) ACS Nano, 3, pp. 3221-3227 | |
dc.description | Khodakovskaya, M.V., De Silva, K., Nedosekin, D.A., Complex genetic, photothermal, and photoacoustic analysis of nanoparticle–plant interactions (2011) Proc Natl Acad Sci U S A, 108, pp. 1028-1033 | |
dc.description | Kim, S.W., Kim, K.S., Lamsal, K., Kim, Y.J., Kim, S.B., An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen raffaelea sp (2009) J Microbiol Biotechnol, 19, pp. 760-764 | |
dc.description | Koehler, J.J., Zhao, J., Jedlicka, S.S., Porterfield, D.M., Rickus, J.L., Compartmentalized nanocomposite for dynamic nitric oxide release (2008) J Phys Chem B, 112, pp. 15086-15093 | |
dc.description | Lai, F., Wissing, S.A., Muller, R.H., Fadda, A.M., Artemisia arborescens l essential oil-loaded solid lipid nanoparticles for potential agriculture application: Preparation and characterization (2006) AAPS Pharm Sci Technol, 7 (1), pp. E2 | |
dc.description | Lee, W.M., Kwak, J.I., An, Y.J., Effect of silver nanoparticles in crop plants phaseolus radiatus and sorghum bicolor: Media effect on phytotoxicity (2012) Chemosphere, 86, pp. 491-499 | |
dc.description | Li, Z.Z., Chen, J.F., Liu, F., Lu, A.Q., Wang, Q., Study of uv shielding properties of novel porous hollow silica nanoparticle carriers for avermectin (2007) Pest Manag Sci, 63, pp. 241-246 | |
dc.description | Li, H., Song, J.B., Zhao, W.T., Yang, Z.M., Atho1 is involved in iron homeostasis in an no-dependent manner (2013) Plant Cell Physiol, 54, pp. 1105-1117 | |
dc.description | Lin, D., Xing, B., Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth (2007) Environ Pollut, 150, pp. 243-250 | |
dc.description | Lin, C.C., Jih, P.J., Lin, H.H., Lin, J.S., Chang, L.L., Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding (2011) Plant Mol Biol, 77, pp. 235-249 | |
dc.description | Lin, A., Wang, Y., Tang, J., Xue, P., Li, C., Nitric oxide and protein s-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice (2012) Plant Physiol, 158, pp. 451-464 | |
dc.description | Ling, Y., Jianan, W., Lei, B., Hailong, S., Effects of exogenous nitric oxide on embryo germination and ros accumulation in seedling growth initial stage of sorbus pohuashanensis (2013) Sci Silvae Sin, 49, pp. 60-67 | |
dc.description | Liu, Y., Laks, P., Heiden, P., Controlled release of biocides in solid wood. Part 1. efficacy against gloeophyllum trabeum, a brown rot wood decay fungus (2002) J Appl Polym Sci, 86, pp. 596-607 | |
dc.description | Liu, Y., Laks, P., Heiden, P., Nanoparticles for the controlled release of fungicides in wood: Soil jar studies using gloeophyllum trabeum and trametes versicolor wood decay fungi (2003) Holzforschung, 57, pp. 35-139 | |
dc.description | Liu, J., He, S.G., Zhang, Z.Q., Cao, J.P., Lv, P.T., Nano-silver pulse treatments inhibit stemend bacteria on cut gerbera cv. Ruikou flowers (2009) Postharvest Biol Technol, 54, pp. 59-62 | |
dc.description | Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Carbon nanotubes as molecular transporters for walled plant cells (2009) Nano Lett, 9, pp. 1007-1010 | |
dc.description | Liu, Q., Zhao, Y., Wan, Y., Zheng, J., Zhang, X., Wang, C., Fang, X., Lin, J., Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level (2010) ACS Nano, 4, pp. 5743-5748 | |
dc.description | Liu, X., Deng, Z., Cheng, H., He, X., Song, S., Nitrite, sodium nitroprusside, potassium ferricyanide and hydrogen peroxide release dormancy of amaranthus retroflexus seeds in a nitric oxide dependent manner (2011) Plant Growth Regul, 64, pp. 155-161 | |
dc.description | Ma, X., Wang, C., Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems (2010) Environ Eng Sci, 27, pp. 989-992 | |
dc.description | Marcato, P.D., Adami, L.A., Barbosa, R.M., Melo, P.S., Ferreira, I.R., De Paula, L., Durán, N., Seabra, A.B., Development of a sustained-release system for nitric oxide delivery using alginate/chitosan nanoparticles (2013) Curr Nanosci, 9, pp. 1-7 | |
dc.description | Marin, E., Briceño, M.I., Caballero-George, C., Critical evaluation of biodegradable polymers used in nanodrugs (2013) Int J Nanomed, 2013 (8), pp. 3071-3091 | |
dc.description | Mazumdar, H., Ahmed, G.U., Phytotoxicity effect of silver nanoparticles on oryza sativa (2011) Int J Chem Technol Res, 3, pp. 1494-1500 | |
dc.description | Min, J.S., Kim, S.W., Jung, J.H., Lamsal, K., Bin Kim, S., Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi (2009) Plant Pathol J, 25, pp. 376-380 | |
dc.description | Mintzer, M.A., Grinstaff, M.W., Biomedical applications of dendrimers: A tutorial (2011) Chem Soc Rev, 40, pp. 173-190 | |
dc.description | Molina, M.M., Seabra, A.B., De Oliveira, M.G., Itri, R., Haddad, P.S., Nitric oxide donor superparamagnetic iron oxide nanoparticles (2013) Mater Sci Eng C-Biomim, 33, pp. 746-751 | |
dc.description | Monica, R.C., Cremonini, R., Nanoparticles and higher plants (2009) Caryologia, 62, pp. 161-165 | |
dc.description | Mur, L., Mandon, J., Persijn, S., Cristescu, S.M., Moshkov, I.E., Novikova, G.V., Hall, M.A., Gupta, K.J., (2013) Nitric Oxide in Plants: An Assessment of the Current State of Knowledge, , AoB Plants 5:pls052 | |
dc.description | Musante, C., White, J.C., Toxicity of silver and copper to cucurbita pepo: Differential effects of nano and bulk-size particles (2012) Environ Toxicol, 27, pp. 510-517 | |
dc.description | Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Nanoparticulate material delivery to plants (2010) Plant Sci, 179, pp. 154-163 | |
dc.description | Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Environmental behaviour and ecotoxicology of engineered nanoparticles to algae, plant and fungi (2008) Revista, 17, pp. 372-386 | |
dc.description | Nguyen, H.M., Hwang, I.C., Park, J.W., Park, H.J., Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid (2012) J Microencapsul, 29, pp. 596-604 | |
dc.description | Ocsoy, I., Paret, M.L., Ocsoy, M.A., Kunwar, S., Chen, T., You, M., Tan, W., Nanotechnology in plant disease management: Dna-directed silver nanoparticles on graphene oxide as an antibacterial against xanthomonas perforans (2013) ACS Nano, 7, pp. 8972-8980 | |
dc.description | Paradise, W.A., Vesper, B.J., Goel, A., Waltonen, J.D., Altman, K.W., Nitric oxide: Perspectives and emerging studies of a well known cytotoxin (2010) Int J Mol Sci, 11, pp. 2715-2745 | |
dc.description | París, R., Iglesias, M.J., Terrile, M.C., Casalongué, C.A., Functions of s-nitrosylation in plant hormone networks (2013) Front Plant Sci, 4 (1-6). , Article 294 | |
dc.description | Park, H.J., Kim, S.H., Kim, H.J., Choi, S.H., A new composition of nanosized silica–silver for control of various plant diseases (2006) Plant Pathol J, 22, pp. 295-302 | |
dc.description | Parzuchowski, P.G., Frost, M.C., Meyerhoff, M.E., Synthesis and characterization of polymethacrylate-based nitric oxide donors (2002) J am Chem Soc, 124, pp. 12182-12191 | |
dc.description | Pasupathy, K., Lin, S., Hu, Q., Luo, H., Dr, P., Direct plant gene delivery with a poly (Amidoamine) dendrimer (2008) Biotechnol J, 3, pp. 1078-1082 | |
dc.description | Prashanth, K., Tharanathan, R.N., Chitin/chitosan: Modifications and their unlimited application potential – an overview (2007) Trends Food Sci Technol, 18, pp. 117-131 | |
dc.description | Racuciu, D.E., Creanga, M., Tma-oh coated magnetic nanoparticles internalized in vegetal tissues (2007) Rom J Phys, 52, pp. 395-402 | |
dc.description | Ramirez, L., Simontacchi, M., Murgia, I., Zabaleta, E., Lamattina, L., Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: A well equipped team to preserve plant iron homeostasis (2011) Plant Sci, 181, pp. 582-592 | |
dc.description | Riccio, D.A., Schoenfisch, M.H., Nitric oxide release: Part i. macromolecular scaffolds (2013) Chem Soc Rev, 21 (41), pp. 3731-3741 | |
dc.description | Romero-Puertas, M.C., Rodríguez-Serrano, M., Sandalio, L.M., Protein s-nitrosylation in plants under abiotic stress: An overview (2013) Front Plant Sci, 4 (1-6). , Article 373 | |
dc.description | Sabo-Attwood, T., Unrine, J.M., Stone, J.W., Murphy, C.J., Ghoshroy, S., (2011) Uptake, Distribution and Toxicity of Gold Nanoparticles in Tobacco (Nicotiana Xanthi) Seedlings, , Nanotoxicology | |
dc.description | Samaj, J., Baluska, F., Voigt, B., Schlicht, M., Volkmann, D., Endocytosis, actin cytoskeleton, and signaling (2004) Plant Physiol, 135, pp. 1150-1161 | |
dc.description | Samuel, J.P., Samboju, N.C., Yau, K.Y., Webb, S.R., Burroughs, F., Use of dendrimer nanotechnology for delivery of biomolecules into plant cells (2011) US Patent, 20 (110), p. 982. , 093 | |
dc.description | Savithramma, N., Ankanna, S., Bhumi, G., Effect of nanoparticles on seed germination and seedling growth of boswellia ovalifoliolata—an endemic and endangered medicinal (2012) Tree Taxon Nano Vis, 2, pp. 61-68 | |
dc.description | Schoenfisch, M.H., Hetrick, E.M., Stasko, N.A., Johnson, C.B., Use of nitric oxide to enhance the efficacy of silver and other topical wound care agents (2009) PCT Int Appl WO, p. 2. , 009 049 208 | |
dc.description | Seabra, A.B., Nitric oxide-releasing nanomaterials and skin care (2011) Nanocosmetics and Nanomedicines, 1St Edn, pp. 253-268. , Beck R, Pohlmann A, Guterres S, Springer, New York | |
dc.description | Seabra, A.B., Durán, N., Nitric oxide-releasing vehicles for biomedical applications (2010) J Mater Chem, 20, pp. 1624-1637 | |
dc.description | Seabra, A.B., Durán, N., Nanotechnology allied to nitric oxide release materials for dermatological applications (2012) Curr Nanosci, 8, pp. 520-525 | |
dc.description | Seabra, A.B., Fitzpatrick, A., Paul, J., De Oliveira, M.G., Weller, R., Topically applied s-nitrosothiol-containing hydrogels as experimental and pharmacological nitric oxide donors in human skin (2004) Br J Dermatol, 151, pp. 977-983 | |
dc.description | Seabra, A.B., Pankotai, E., Fecher, M., Somlai, A., Kiss, L., S-nitrosoglutathione-containing hydrogel increases dermal blood flow in streptozotocin-induced diabetic rats (2007) Br J Dermatol, 156, pp. 814-818 | |
dc.description | Seabra, A.B., Da Silva, R., De Souza, G., De Oliveira, M.G., Antithrombogenic polynitrosated polyester/poly(Methyl methacrylate) blend for the coating of blood-contacting surfaces (2008) Artif Organs, 32, pp. 262-267 | |
dc.description | Seabra, A.B., Martins, D.M., Da Silva, R., Simões, M., Brocchi, M., Antibacterial nitric oxide polyester for the coating of blood-contacting artificial materials (2010) Artif Organs, 34, pp. E204-E214 | |
dc.description | Seabra, A.B., Marcato, P.D., De Paula, L.B., Durán, N., New strategy for controlled release of nitric oxide (2012) J Nano Res, 20, pp. 61-67 | |
dc.description | Seabra, A.B., Rai, M., Durán, N., Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: A mini review (2013) J Plant Biochem Biotechnol | |
dc.description | Shi, H.T., Li, R.J., Cai, W., Liu, W., Wang, C.L., In vivo role of nitric oxide in plant response to abiotic and biotic stress (2012) Plant Sign Behav, 7, pp. 438-440 | |
dc.description | Shi, H., Ye, T., Zhu, J.K., Shi, H., Ye, T., Zhu, J.K., Chan, Z., Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in arabidopsis (2014) J Exp Bot | |
dc.description | Shin, J.H., Metzger, S.K., Schoenfisch, M.H., Synthesis of nitric oxide releasing silica nanoparticles (2007) J am Chem Soc, 129, pp. 4612-4619 | |
dc.description | Siddiqui, M.H., Al-Whaibi, M.H., Basalah, M.O., Role of nitric oxide in tolerance of plants to abiotic stress (2011) Protoplasma, 248, pp. 447-455 | |
dc.description | Simplício, F.I., Seabra, A.B., De Souza, G., De Oliveira, M.G., In vitro inhibition of linoleic acid peroxidation by primary s-nitrosothiols (2010) J Braz Chem Soc, 21, pp. 1885-1895 | |
dc.description | Sivitz, A.B., Hermand, V., Curie, C., Vert, G., Arabidopsis bhlh100 and bhlh101 control iron homeostasis via a fit-independent pathway (2012) Plos One, 7 (9), pp. e44843 | |
dc.description | Slomberg, D.L., Lu, Y., Broadnax, A.D., Hunter, R.A., Carpenter, A.W., Schoenfisch, M.H., Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles (2013) ACS Appl Mater Interfaces, 5, pp. 9322-9329 | |
dc.description | Slowing, I.I., Vivero-Escoto, J.L., Wu, C.-W., Lin, V., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers (2008) Adv Drug Deliv Rev, 60, pp. 1278-1288 | |
dc.description | Solgi, M., Kafi, M., Taghavi, T.S., Naderi, R., Essential oils and silver nanoparticles (Snp) as novel agents to extend vase-life of gerbera (gerbera jamesonii cv. ‘dune’) flowers (2009) Postharvest Biol Technol, 53, pp. 155-158 | |
dc.description | Srivastava, S., Dubey, R.S., Nitric oxide alleviates manganese toxicity by preventing oxidative stress in excised rice leaves (2012) Acta Physiol Plant, 34, pp. 819-825 | |
dc.description | Stampoulis, D., Sinha, S.K., White, J.C., Assay dependent phytotoxicity of nanoparticles to plants (2009) Environ Sci Technol, 43, pp. 9473-9479 | |
dc.description | Stasko, N.A., Schoenfisch, M.H., Dendrimers as a scaffold for nitric oxide release (2006) J am Chem Soc, 128, pp. 8265-8271 | |
dc.description | Stasko, N.A., Fischer, T.H., Schoenfisch, M.H., S-nitrosothiol-modified dendrimers as nitric oxide delivery vehicles (2008) Biomacromolecules, 9, pp. 834-841 | |
dc.description | Taladriz-Blanco, P., Rodrıguez-Lorenzo, L., Sanles-Sobrido, M., Herve, P., Correa-Duarte, M.A., Sers study of the controllable release of nitric oxide from aromatic nitrosothiols on bimetallic, bifunctional nanoparticles supported on carbon nanotubes (2009) ACS Appl Mater Interfaces, 1, pp. 56-59 | |
dc.description | Taladriz-Blanco, P., Pastoriza-Santos, V., Pérez-Juste, J., Hervés, P., Controllable nitric oxide release in the presence of gold nanoparticles (2013) Langmuir, 29, pp. 8061-8069 | |
dc.description | Talebi, S.F., Mortazavi, S.N., Sharafi, Y., Extending vase life of rosa (Cv. ‘sensiro’) cut flowers with nitric oxide (2013) Int J Agron Plant Prod, 4, pp. 1178-1183 | |
dc.description | Tan, J., Zhao, H., Hong, J., Han, Y., Li, H., Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress (2008) World J Agric Sci, 4, pp. 307-313 | |
dc.description | Taylor, T.M., Davidson, P.M., Bruce, B.D., Weiss, J., Liposomal nanocapsules in food science and agriculture (2005) Crit Rev Food Sci Nutr, 45, pp. 587-605 | |
dc.description | Torney, F., Trewyn, B.G., Lin, V., Wang, K., Mesoporous sı´lica nanoparticles deliver dna and chemicals into plants (2007) Nat Nanotechnol, 12, pp. 295-300 | |
dc.description | Trotel-Aziz, P., Couderchet, M., Vernet, G., Aziz, A., Chitosan stimulates defense reactions in grapevine leaves and inhibits development of botrytis cinerea (2006) Eur J Plant Pathol, 114, pp. 405-413 | |
dc.description | Wan, A., Gao, Q., Li, H., Effects of molecular weight and degree of acetylation on the release of nitric oxide from chitosan–nitric oxide adducts (2010) J Appl Polym Sci, 117, pp. 2183-2188 | |
dc.description | Wang, S.H., Zhang, H., Jianga, S.J., Zhang, L., He, Q.Y., Effects of the nitric oxide donor sodium nitroprusside on antioxidant enzymes in wheat seedling roots under nickel stress (2010) Russ J Plant Physiol, 57, pp. 833-839 | |
dc.description | Wang, Y., Lin, A., Loake, G.J., Chu, C., H2o2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species (2013) J Integr Plant Biol, 55, pp. 202-208 | |
dc.description | Wendehenne, D., Hancock, J.T., New frontiers in nitric oxide biology in plant (2011) Plant Sci, 181, pp. 507-508 | |
dc.description | Wiesman, Z., Ben Dom, N., Sharvit, E., Grinberg, S., Linder, C., Novel cationic vesicle platform derived from vernonia oil for efficient delivery of dna through plant cuticle membranes (2007) J Biotechnol, 130, pp. 85-94 | |
dc.description | Yoo, J., Lee, C., (2006), http://www.aapsj.org/abstracts/AM_2006/staged/AAPS,001991.PDFZagorchev, L., Seal, C.E., Kranner, I., Odjakova, M., A central role for thiols in plant tolerance to abiotic stress (2013) Int J Mol Sci, 14, pp. 7405-7432 | |
dc.description | Zhang, L., Wang, Y., Zhao, L., Shi, S., Zhang, L., Involvement of nitric oxide in light-mediated greening of barley seedlings (2006) J Plant Phys, 163, pp. 818-826 | |
dc.description | Zhang, X.Y., Dong, Y.J., Qiu, X.K., Hu, G.Q., Wang, Y.H., Exogenous nitric oxide alleviates iron-deficiency chlorosis in peanut growing on calcareous soil (2012) Plant Soil Environ, 58, pp. 111-120 | |
dc.description | Zheng, C., Jiang, D., Liu, F., Dai, T., Liu, W., Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity (2009) Environ Exp Bot, 67, pp. 222-227 | |
dc.description | Zhu, H., Han, J., Xiao, J.Q., Jin, Y., Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants (2008) J Environ Monitor, 10, pp. 713-717 | |
dc.description | Zhukovskii, V.A., Problems and prospects for development and production of surgical suture materials (2008) Fibre Chem, 40, pp. 208-216 | |
dc.description | Zou, T., Zheng, L.P., Yuan, H.Y., Yuan, Y.F., Wang, J.W., The nitric oxide production and nadphdiaphorase activity in root tips of vicia faba l. Under copper toxicity (2012) Plant Omics J, 5, pp. 115-121 | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | Springer International Publishing | |
dc.relation | Nanotechnologies in Food and Agriculture | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Emerging Role Of Nanocarriers In Delivery Of Nitric Oxide For Sustainable Agriculture | |
dc.type | Capítulos de libros | |