dc.date2015
dc.date2016-06-03T20:13:47Z
dc.date2016-06-03T20:13:47Z
dc.date.accessioned2018-03-29T01:32:52Z
dc.date.available2018-03-29T01:32:52Z
dc.identifier9783319140247; 9783319140230
dc.identifierNanotechnologies In Food And Agriculture. Springer International Publishing, p. 183 - 207, 2015.
dc.identifier
dc.identifier10.1007/978-3-319-14024-7_9
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84944245348&partnerID=40&md5=d31a97c168fa2816e0c231a5fc2844dc
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/238123
dc.identifier2-s2.0-84944245348
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1304784
dc.descriptionThe endogenously found free radical nitric oxide (NO) has important roles in several aspects related to plant defense and growth. NO is a signaling messenger in animals and plants due to its particular chemistry, as uncharged and small molecule, relatively lipophilic. In recent year, important papers have been describing the advantages of using NO donors in agriculture. Indeed, administration of NO donors to plants is reported to stimulate plant greening and germination, control iron homeostasis, and improve plant tolerance to metal toxicity, salinity, drought stress, and high temperatures. Low molecular weight NO donors are known to be thermally and photochemically unstable, impairing their applications in agriculture. In this context, the combination of NO donors with nanomaterials has been emerging as a promising approach to optimize the beneficial effects of NO in plants. In spite that nanomaterials have been employed to carry agrochemicals in plants, the combination of NO donors and nanomaterials is yet not deeper explored in agriculture. In this scenario, this chapter highlights the advantages of applications of NO donors in plants, the uses of nanotechnology in agriculture, and the necessity to develop new strategies based on the combination of NO and nanomaterials in agriculture © Springer International Publishing Switzerland 2015.
dc.description
dc.description
dc.description183
dc.description207
dc.descriptionAftab, T., Khan, M., Naeem, M., Idrees, M., Exogenous nitric oxide donor protects artemisia annua from oxidative stress generated by boron and aluminium toxicity (2012) Ecotoxicol Environ Saf, 80, pp. 60-68
dc.descriptionAhmed, F., Rodrigues, D.F., Investigation of acute effects of graphene oxide on wastewater microbial community: A case study (2013) J Hazard Mater, 256 (257), pp. 33-39
dc.descriptionAlvarez-Puebla, R.A., Ross, D.J., Nazri, G.A., Aroca, R.F., Surface enhanced raman scattering on nanoshells with tunable surface plasmon resonance (2005) Langmuir, 21, pp. 10504-10508
dc.descriptionAmadeu, T.P., Seabra, A.B., De Oliveira, M.G., Costa, A., S-nitrosoglutathione-containing hydrogel accelerates rat cutaneous wound repair (2007) J Eur Acad Dermatol Venereol, 21, pp. 629-637
dc.descriptionAmadeu, T.P., Seabra, A.B., De Oliveira, M.G., Costa, A., Nitric oxide donor improves healing if applied on inflammatory and proliferative phase (2008) J Surg Res, 149, pp. 84-93
dc.descriptionAntoniou, C., Filippou, P., Mylona, P., Fasoula, D., Loannides, L., Polidoros, A., Fotopoulos, V., Developmental stage- and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of medicago truncatula plants (2013) Plant Signal Behav, 8 (9), pp. e25479
dc.descriptionArc, E., Galland, M., Godin, B., Cueff, G., Rajjou, L., Nitric oxide implication in the control of seed dormancy and germination (2013) Front Plant Sci, 4, pp. 1-13. , Article 346
dc.descriptionBarik, T.K., Sahu, B., Swain, V., Nanosilica—from medicine to pest control (2008) Parasitol Res, 103, pp. 253-258
dc.descriptionBaudouin, E., The language of nitric oxide signaling (2011) Plant Biol, 13, pp. 233-242
dc.descriptionBavita, A., Shashi, B., Navtej, S.B., Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat (2012) Indian J Exp Biol, 50, pp. 372-378
dc.descriptionBegum, P., Fugetsu, B., Induction of cell death by graphene in arabidopsis thaliana (Columbia ecotype) t87 cell suspensions (2013) J Hazard Mater, 260, pp. 1032-1041
dc.descriptionBegum, P., Ikhtiari, R.I., Fugetsu, B., Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce (2011) Carbon, 49, pp. 3907-3919
dc.descriptionBeligni, M.V., Lamattina, L., Nitric oxide stimulates seed germination and de-etiolation and inhibits hypocotyl elongation: Three light-inducible responses in plants (2000) Planta, 210, pp. 215-221
dc.descriptionBenini, P., McGarvey, B.R., Franco, D.W., Functionalization of pamam dendrimers with [ru-iii(Edta)(h2o)](-) (2008) Nitric Oxide, 19, pp. 245-251
dc.descriptionBesson-Bard, A., Pugin, A., Wendehenne, D., New insights into nitric oxide signaling in plants (2008) Annu Rev Plant Physiol, 59, pp. 21-40
dc.descriptionBewley, J.D., Seed germination and dormancy (1997) Plant Cell, 9, pp. 1055-1066
dc.descriptionCanas, J.E., Long, M., Nations, S., Vadan, R., Dai, L., Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species (2008) Environ Toxicol Chem, 27, pp. 1922-1931
dc.descriptionCarpenter, A.W., Schoenfisch, M.H., Nitric oxide release: Part ii. therapeutic applications (2012) Chem Soc Rev, 41, pp. 3742-3752
dc.descriptionChang, W.L., Shaily, M., Katherine, Z., Li, D., Yu-Chang, T., Developmental phytotoxicity of metal oxide nanoparticles to arabidopsis thaliana (2010) Environ Toxicol Chem, 29, pp. 669-675
dc.descriptionChen, K., Chen, L., Fan, J., Fu, J., Alleviation of heat damage to photosystem ii by nitric oxide in tal fescue (2013) Photosynth Res, 116, pp. 21-31
dc.descriptionCollom, L., Emnanis, D., Wael, H., Anindya, G., Ruthenium complexes of amido macrocyclic ligands for no release (2008) 64Th Southwest Regional Meeting of the American Chemical Society, , Abstract
dc.descriptionCorpas, F.J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stres (2011) Plant Sc, 18, pp. 604-661
dc.descriptionDalCorso, G., Manara, A., Furini, A., An overview of heavy metal challenge in plants: From roots to shoots (2013) Metallomics, 5, pp. 1117-1132
dc.descriptionDalvi, A.A., Bhalerao, S.A., Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism (2013) Ann Plant Sci, 2, pp. 362-368
dc.descriptionDing, F., Effects of salinity and nitric oxide donor sodium nitroprusside (Snp) on development and salt secretion of salt glands of limonium bicolor (2012) Acta Phys Plant
dc.descriptionDitta, A., How helpful is nanotechnology in agriculture? (2012) Adv Nat Sci Nanosci Nanotechnol, p. 3. , 033002
dc.descriptionDurán, N., Marcato, P.D., Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review (2013) Int J Food Sci Technol, 48, pp. 1127-1134
dc.descriptionDurán, N., Marcato, P.D., De Conti, R., Alves, O.L., Costa, F., Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action (2010) J Braz Chem Soc, 21, pp. 949-959
dc.descriptionEderli, L., Reale, L., Madeo, L., Ferranti, F., Gehring, C., Formaciari, M., Romano, B., Pasqualini, S., No release by nitric oxide donors in vitro and in planta (2009) Plant Physiol Biochem, 47, pp. 42-48
dc.descriptionEl-Temsah, Y.S., Joner, E.J., Impact of fe and ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil (2010) Environ Toxicol, 27, pp. 42-49
dc.descriptionEva, J.G., Lesley, C.B., Jamie, R.L., Phytotoxicity of silver nanoparticles to lemna minor l (2011) Environ Pollut, 159, pp. 1551-1559
dc.descriptionFan, H.F., Du, C.X., Guo, S.R., Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content (2013) Environ Exp Bot, 86, pp. 52-59
dc.descriptionFerreira, L.C., Cataneo, A.C., Nitric oxide in plants: A brief discussion on this multifunctional molecule (2010) Sci Agric, 67, pp. 236-243
dc.descriptionFugetsu, B., Begum, P., Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce (2011) Carbon Nanotubes – from Research to Applications, , Dr. Stefano Biancoed, Chapter 10, InTech
dc.descriptionGao, Q., Wang, G.J., Wan, A.J., Synthesis and characterization of chitosan-based diazeniumdiolates (2008) Polym Mater Sci Eng, 12, pp. 42-45
dc.descriptionGarcía-Mata, C., Lamattina, L., Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress (2001) Plant Physiol, 126, pp. 1196-1204
dc.descriptionGniazdowska, A., Krasuska, A., Czajkowska, K., Bogatek, R., Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings (2010) Plant Growth Regul, 61, pp. 75-84
dc.descriptionGogos, A., Knauer, K., Bucheli, T.D., Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities (2012) J Agric Food Chem, 60, pp. 9781-9792
dc.descriptionGomes, A.J., Barbougli, P.A., Espreafico, E.M., Tfouni, E., Trans-[ru(No)(nh3)(4)(py)](bf4)(3) center dot h2o encapsulated in plga microparticles for delivery of nitric oxide to b16–f10 cells: Cytotoxicity and phototoxicity (2008) J Inorg Biochem, 102, pp. 757-766
dc.descriptionGonzalez-Melendi, P., Fernandez-Pacheco, R., Coronado, M.J., Corredor, E., Testillano, P.S., Nanoparticles as smart treatment delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues (2008) Ann Bot, 101, pp. 187-195
dc.descriptionGraziano, M., Beligni, M.V., Lamattina, L., Nitric oxide improves internal iron availability in plants (2002) Plant Physiol, 130, pp. 1852-1859
dc.descriptionGrover, M., Singh, S.R., Venkateswarlu, B., Nanotechnology: Scope and limitations in agriculture (2012) Int J Nanotechnol Appl, 2, pp. 10-38
dc.descriptionGupta, K.J., Igamberdiev, A.U., Manjunatha, G., Segu, S., Moran, J.F., The emerging roles of nitric oxide (No) in plant mitochondria (2011) Plant Sci, 181, pp. 520-526
dc.descriptionGupta, K.J., Fernie, A.R., Kaiser, W.M., Van Dongen, J.T., On the origins of nitric oxide (2011) Trends Plant Sci, 16, pp. 160-168
dc.descriptionGupta, K.J., Hincha, D.K., Mur, L., No way to treat a cold (2011) New Phytol, 189, pp. 360-363
dc.descriptionHabib, N., Ashraf, M., Shahbaz, M., Effect of exogenously applied nitric oxide on some key physiological attributes of rice (Oryza sativa l.) plants under salt stress (2013) Pak J Bot, 45, pp. 1563-1569
dc.descriptionHadadd, P.S., Seabra, A.B., Biomedical applications of magnetic nanoparticles (2012) Iron Oxides: Structure, Properties and Applications, pp. 165-188. , Gotsiridze-Columbus N, Nova, Nova York
dc.descriptionHasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., Fujita, M., Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants (2013) Int J Mol Sci, 14, pp. 9643-9684
dc.descriptionHayes, R.T., Owen, D.J., Chauhan, A.S., Pulgam, V.R., Peham dendrimers for use in agriculture (2011) US Patent, 20 (110), p. 230. , 348
dc.descriptionHetrick, E.M., Shin, J.H., Stasko, N.A., Johnson, C.B., Wespe, D.A., Bactericidal efficacy of nitric oxide-releasing silica nanoparticles (2008) ACS Nano, 2, pp. 235-246
dc.descriptionHoltz, R.D., Souza, A.G., Brocchi, M., Martins, D., Duran, N., Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent (2010) Nanotechnology, 21, p. 185102
dc.descriptionHuang, S.L., Kee, P.H., Kim, H., Moody, M.R., Chrzanowski, S.M., Nitric oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia (2009) J am Coll Cardiol, 54, pp. 652-659
dc.descriptionIgnarro, L.J., (2000) Nitric Oxide, Biology and Pathobiology, , Academic, San Diego
dc.descriptionJastrzebska, A.M., Kurtycz, P., Olszyna, A.R., Recent advances in graphene family materials toxicity investigations (2012) J Nanopart Res, 14, p. 1320
dc.descriptionKaviani, M., Mortazavi, S.N., Effect of nitric oxide and thidiazuron on lilium cut flowers during postharvest (2013) Int J Agron Plant Prod, 4, pp. 64-669
dc.descriptionKhan, M.N., Siddiqui, M.H., Mohammad, F., Naeem, M., Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress (2012) Nitric Oxide, 27, pp. 210-218
dc.descriptionKhodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z.R., Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth (2009) ACS Nano, 3, pp. 3221-3227
dc.descriptionKhodakovskaya, M.V., De Silva, K., Nedosekin, D.A., Complex genetic, photothermal, and photoacoustic analysis of nanoparticle–plant interactions (2011) Proc Natl Acad Sci U S A, 108, pp. 1028-1033
dc.descriptionKim, S.W., Kim, K.S., Lamsal, K., Kim, Y.J., Kim, S.B., An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen raffaelea sp (2009) J Microbiol Biotechnol, 19, pp. 760-764
dc.descriptionKoehler, J.J., Zhao, J., Jedlicka, S.S., Porterfield, D.M., Rickus, J.L., Compartmentalized nanocomposite for dynamic nitric oxide release (2008) J Phys Chem B, 112, pp. 15086-15093
dc.descriptionLai, F., Wissing, S.A., Muller, R.H., Fadda, A.M., Artemisia arborescens l essential oil-loaded solid lipid nanoparticles for potential agriculture application: Preparation and characterization (2006) AAPS Pharm Sci Technol, 7 (1), pp. E2
dc.descriptionLee, W.M., Kwak, J.I., An, Y.J., Effect of silver nanoparticles in crop plants phaseolus radiatus and sorghum bicolor: Media effect on phytotoxicity (2012) Chemosphere, 86, pp. 491-499
dc.descriptionLi, Z.Z., Chen, J.F., Liu, F., Lu, A.Q., Wang, Q., Study of uv shielding properties of novel porous hollow silica nanoparticle carriers for avermectin (2007) Pest Manag Sci, 63, pp. 241-246
dc.descriptionLi, H., Song, J.B., Zhao, W.T., Yang, Z.M., Atho1 is involved in iron homeostasis in an no-dependent manner (2013) Plant Cell Physiol, 54, pp. 1105-1117
dc.descriptionLin, D., Xing, B., Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth (2007) Environ Pollut, 150, pp. 243-250
dc.descriptionLin, C.C., Jih, P.J., Lin, H.H., Lin, J.S., Chang, L.L., Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding (2011) Plant Mol Biol, 77, pp. 235-249
dc.descriptionLin, A., Wang, Y., Tang, J., Xue, P., Li, C., Nitric oxide and protein s-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice (2012) Plant Physiol, 158, pp. 451-464
dc.descriptionLing, Y., Jianan, W., Lei, B., Hailong, S., Effects of exogenous nitric oxide on embryo germination and ros accumulation in seedling growth initial stage of sorbus pohuashanensis (2013) Sci Silvae Sin, 49, pp. 60-67
dc.descriptionLiu, Y., Laks, P., Heiden, P., Controlled release of biocides in solid wood. Part 1. efficacy against gloeophyllum trabeum, a brown rot wood decay fungus (2002) J Appl Polym Sci, 86, pp. 596-607
dc.descriptionLiu, Y., Laks, P., Heiden, P., Nanoparticles for the controlled release of fungicides in wood: Soil jar studies using gloeophyllum trabeum and trametes versicolor wood decay fungi (2003) Holzforschung, 57, pp. 35-139
dc.descriptionLiu, J., He, S.G., Zhang, Z.Q., Cao, J.P., Lv, P.T., Nano-silver pulse treatments inhibit stemend bacteria on cut gerbera cv. Ruikou flowers (2009) Postharvest Biol Technol, 54, pp. 59-62
dc.descriptionLiu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Carbon nanotubes as molecular transporters for walled plant cells (2009) Nano Lett, 9, pp. 1007-1010
dc.descriptionLiu, Q., Zhao, Y., Wan, Y., Zheng, J., Zhang, X., Wang, C., Fang, X., Lin, J., Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level (2010) ACS Nano, 4, pp. 5743-5748
dc.descriptionLiu, X., Deng, Z., Cheng, H., He, X., Song, S., Nitrite, sodium nitroprusside, potassium ferricyanide and hydrogen peroxide release dormancy of amaranthus retroflexus seeds in a nitric oxide dependent manner (2011) Plant Growth Regul, 64, pp. 155-161
dc.descriptionMa, X., Wang, C., Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems (2010) Environ Eng Sci, 27, pp. 989-992
dc.descriptionMarcato, P.D., Adami, L.A., Barbosa, R.M., Melo, P.S., Ferreira, I.R., De Paula, L., Durán, N., Seabra, A.B., Development of a sustained-release system for nitric oxide delivery using alginate/chitosan nanoparticles (2013) Curr Nanosci, 9, pp. 1-7
dc.descriptionMarin, E., Briceño, M.I., Caballero-George, C., Critical evaluation of biodegradable polymers used in nanodrugs (2013) Int J Nanomed, 2013 (8), pp. 3071-3091
dc.descriptionMazumdar, H., Ahmed, G.U., Phytotoxicity effect of silver nanoparticles on oryza sativa (2011) Int J Chem Technol Res, 3, pp. 1494-1500
dc.descriptionMin, J.S., Kim, S.W., Jung, J.H., Lamsal, K., Bin Kim, S., Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi (2009) Plant Pathol J, 25, pp. 376-380
dc.descriptionMintzer, M.A., Grinstaff, M.W., Biomedical applications of dendrimers: A tutorial (2011) Chem Soc Rev, 40, pp. 173-190
dc.descriptionMolina, M.M., Seabra, A.B., De Oliveira, M.G., Itri, R., Haddad, P.S., Nitric oxide donor superparamagnetic iron oxide nanoparticles (2013) Mater Sci Eng C-Biomim, 33, pp. 746-751
dc.descriptionMonica, R.C., Cremonini, R., Nanoparticles and higher plants (2009) Caryologia, 62, pp. 161-165
dc.descriptionMur, L., Mandon, J., Persijn, S., Cristescu, S.M., Moshkov, I.E., Novikova, G.V., Hall, M.A., Gupta, K.J., (2013) Nitric Oxide in Plants: An Assessment of the Current State of Knowledge, , AoB Plants 5:pls052
dc.descriptionMusante, C., White, J.C., Toxicity of silver and copper to cucurbita pepo: Differential effects of nano and bulk-size particles (2012) Environ Toxicol, 27, pp. 510-517
dc.descriptionNair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Nanoparticulate material delivery to plants (2010) Plant Sci, 179, pp. 154-163
dc.descriptionNavarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Environmental behaviour and ecotoxicology of engineered nanoparticles to algae, plant and fungi (2008) Revista, 17, pp. 372-386
dc.descriptionNguyen, H.M., Hwang, I.C., Park, J.W., Park, H.J., Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid (2012) J Microencapsul, 29, pp. 596-604
dc.descriptionOcsoy, I., Paret, M.L., Ocsoy, M.A., Kunwar, S., Chen, T., You, M., Tan, W., Nanotechnology in plant disease management: Dna-directed silver nanoparticles on graphene oxide as an antibacterial against xanthomonas perforans (2013) ACS Nano, 7, pp. 8972-8980
dc.descriptionParadise, W.A., Vesper, B.J., Goel, A., Waltonen, J.D., Altman, K.W., Nitric oxide: Perspectives and emerging studies of a well known cytotoxin (2010) Int J Mol Sci, 11, pp. 2715-2745
dc.descriptionParís, R., Iglesias, M.J., Terrile, M.C., Casalongué, C.A., Functions of s-nitrosylation in plant hormone networks (2013) Front Plant Sci, 4 (1-6). , Article 294
dc.descriptionPark, H.J., Kim, S.H., Kim, H.J., Choi, S.H., A new composition of nanosized silica–silver for control of various plant diseases (2006) Plant Pathol J, 22, pp. 295-302
dc.descriptionParzuchowski, P.G., Frost, M.C., Meyerhoff, M.E., Synthesis and characterization of polymethacrylate-based nitric oxide donors (2002) J am Chem Soc, 124, pp. 12182-12191
dc.descriptionPasupathy, K., Lin, S., Hu, Q., Luo, H., Dr, P., Direct plant gene delivery with a poly (Amidoamine) dendrimer (2008) Biotechnol J, 3, pp. 1078-1082
dc.descriptionPrashanth, K., Tharanathan, R.N., Chitin/chitosan: Modifications and their unlimited application potential – an overview (2007) Trends Food Sci Technol, 18, pp. 117-131
dc.descriptionRacuciu, D.E., Creanga, M., Tma-oh coated magnetic nanoparticles internalized in vegetal tissues (2007) Rom J Phys, 52, pp. 395-402
dc.descriptionRamirez, L., Simontacchi, M., Murgia, I., Zabaleta, E., Lamattina, L., Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: A well equipped team to preserve plant iron homeostasis (2011) Plant Sci, 181, pp. 582-592
dc.descriptionRiccio, D.A., Schoenfisch, M.H., Nitric oxide release: Part i. macromolecular scaffolds (2013) Chem Soc Rev, 21 (41), pp. 3731-3741
dc.descriptionRomero-Puertas, M.C., Rodríguez-Serrano, M., Sandalio, L.M., Protein s-nitrosylation in plants under abiotic stress: An overview (2013) Front Plant Sci, 4 (1-6). , Article 373
dc.descriptionSabo-Attwood, T., Unrine, J.M., Stone, J.W., Murphy, C.J., Ghoshroy, S., (2011) Uptake, Distribution and Toxicity of Gold Nanoparticles in Tobacco (Nicotiana Xanthi) Seedlings, , Nanotoxicology
dc.descriptionSamaj, J., Baluska, F., Voigt, B., Schlicht, M., Volkmann, D., Endocytosis, actin cytoskeleton, and signaling (2004) Plant Physiol, 135, pp. 1150-1161
dc.descriptionSamuel, J.P., Samboju, N.C., Yau, K.Y., Webb, S.R., Burroughs, F., Use of dendrimer nanotechnology for delivery of biomolecules into plant cells (2011) US Patent, 20 (110), p. 982. , 093
dc.descriptionSavithramma, N., Ankanna, S., Bhumi, G., Effect of nanoparticles on seed germination and seedling growth of boswellia ovalifoliolata—an endemic and endangered medicinal (2012) Tree Taxon Nano Vis, 2, pp. 61-68
dc.descriptionSchoenfisch, M.H., Hetrick, E.M., Stasko, N.A., Johnson, C.B., Use of nitric oxide to enhance the efficacy of silver and other topical wound care agents (2009) PCT Int Appl WO, p. 2. , 009 049 208
dc.descriptionSeabra, A.B., Nitric oxide-releasing nanomaterials and skin care (2011) Nanocosmetics and Nanomedicines, 1St Edn, pp. 253-268. , Beck R, Pohlmann A, Guterres S, Springer, New York
dc.descriptionSeabra, A.B., Durán, N., Nitric oxide-releasing vehicles for biomedical applications (2010) J Mater Chem, 20, pp. 1624-1637
dc.descriptionSeabra, A.B., Durán, N., Nanotechnology allied to nitric oxide release materials for dermatological applications (2012) Curr Nanosci, 8, pp. 520-525
dc.descriptionSeabra, A.B., Fitzpatrick, A., Paul, J., De Oliveira, M.G., Weller, R., Topically applied s-nitrosothiol-containing hydrogels as experimental and pharmacological nitric oxide donors in human skin (2004) Br J Dermatol, 151, pp. 977-983
dc.descriptionSeabra, A.B., Pankotai, E., Fecher, M., Somlai, A., Kiss, L., S-nitrosoglutathione-containing hydrogel increases dermal blood flow in streptozotocin-induced diabetic rats (2007) Br J Dermatol, 156, pp. 814-818
dc.descriptionSeabra, A.B., Da Silva, R., De Souza, G., De Oliveira, M.G., Antithrombogenic polynitrosated polyester/poly(Methyl methacrylate) blend for the coating of blood-contacting surfaces (2008) Artif Organs, 32, pp. 262-267
dc.descriptionSeabra, A.B., Martins, D.M., Da Silva, R., Simões, M., Brocchi, M., Antibacterial nitric oxide polyester for the coating of blood-contacting artificial materials (2010) Artif Organs, 34, pp. E204-E214
dc.descriptionSeabra, A.B., Marcato, P.D., De Paula, L.B., Durán, N., New strategy for controlled release of nitric oxide (2012) J Nano Res, 20, pp. 61-67
dc.descriptionSeabra, A.B., Rai, M., Durán, N., Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: A mini review (2013) J Plant Biochem Biotechnol
dc.descriptionShi, H.T., Li, R.J., Cai, W., Liu, W., Wang, C.L., In vivo role of nitric oxide in plant response to abiotic and biotic stress (2012) Plant Sign Behav, 7, pp. 438-440
dc.descriptionShi, H., Ye, T., Zhu, J.K., Shi, H., Ye, T., Zhu, J.K., Chan, Z., Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in arabidopsis (2014) J Exp Bot
dc.descriptionShin, J.H., Metzger, S.K., Schoenfisch, M.H., Synthesis of nitric oxide releasing silica nanoparticles (2007) J am Chem Soc, 129, pp. 4612-4619
dc.descriptionSiddiqui, M.H., Al-Whaibi, M.H., Basalah, M.O., Role of nitric oxide in tolerance of plants to abiotic stress (2011) Protoplasma, 248, pp. 447-455
dc.descriptionSimplício, F.I., Seabra, A.B., De Souza, G., De Oliveira, M.G., In vitro inhibition of linoleic acid peroxidation by primary s-nitrosothiols (2010) J Braz Chem Soc, 21, pp. 1885-1895
dc.descriptionSivitz, A.B., Hermand, V., Curie, C., Vert, G., Arabidopsis bhlh100 and bhlh101 control iron homeostasis via a fit-independent pathway (2012) Plos One, 7 (9), pp. e44843
dc.descriptionSlomberg, D.L., Lu, Y., Broadnax, A.D., Hunter, R.A., Carpenter, A.W., Schoenfisch, M.H., Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles (2013) ACS Appl Mater Interfaces, 5, pp. 9322-9329
dc.descriptionSlowing, I.I., Vivero-Escoto, J.L., Wu, C.-W., Lin, V., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers (2008) Adv Drug Deliv Rev, 60, pp. 1278-1288
dc.descriptionSolgi, M., Kafi, M., Taghavi, T.S., Naderi, R., Essential oils and silver nanoparticles (Snp) as novel agents to extend vase-life of gerbera (gerbera jamesonii cv. ‘dune’) flowers (2009) Postharvest Biol Technol, 53, pp. 155-158
dc.descriptionSrivastava, S., Dubey, R.S., Nitric oxide alleviates manganese toxicity by preventing oxidative stress in excised rice leaves (2012) Acta Physiol Plant, 34, pp. 819-825
dc.descriptionStampoulis, D., Sinha, S.K., White, J.C., Assay dependent phytotoxicity of nanoparticles to plants (2009) Environ Sci Technol, 43, pp. 9473-9479
dc.descriptionStasko, N.A., Schoenfisch, M.H., Dendrimers as a scaffold for nitric oxide release (2006) J am Chem Soc, 128, pp. 8265-8271
dc.descriptionStasko, N.A., Fischer, T.H., Schoenfisch, M.H., S-nitrosothiol-modified dendrimers as nitric oxide delivery vehicles (2008) Biomacromolecules, 9, pp. 834-841
dc.descriptionTaladriz-Blanco, P., Rodrıguez-Lorenzo, L., Sanles-Sobrido, M., Herve, P., Correa-Duarte, M.A., Sers study of the controllable release of nitric oxide from aromatic nitrosothiols on bimetallic, bifunctional nanoparticles supported on carbon nanotubes (2009) ACS Appl Mater Interfaces, 1, pp. 56-59
dc.descriptionTaladriz-Blanco, P., Pastoriza-Santos, V., Pérez-Juste, J., Hervés, P., Controllable nitric oxide release in the presence of gold nanoparticles (2013) Langmuir, 29, pp. 8061-8069
dc.descriptionTalebi, S.F., Mortazavi, S.N., Sharafi, Y., Extending vase life of rosa (Cv. ‘sensiro’) cut flowers with nitric oxide (2013) Int J Agron Plant Prod, 4, pp. 1178-1183
dc.descriptionTan, J., Zhao, H., Hong, J., Han, Y., Li, H., Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress (2008) World J Agric Sci, 4, pp. 307-313
dc.descriptionTaylor, T.M., Davidson, P.M., Bruce, B.D., Weiss, J., Liposomal nanocapsules in food science and agriculture (2005) Crit Rev Food Sci Nutr, 45, pp. 587-605
dc.descriptionTorney, F., Trewyn, B.G., Lin, V., Wang, K., Mesoporous sı´lica nanoparticles deliver dna and chemicals into plants (2007) Nat Nanotechnol, 12, pp. 295-300
dc.descriptionTrotel-Aziz, P., Couderchet, M., Vernet, G., Aziz, A., Chitosan stimulates defense reactions in grapevine leaves and inhibits development of botrytis cinerea (2006) Eur J Plant Pathol, 114, pp. 405-413
dc.descriptionWan, A., Gao, Q., Li, H., Effects of molecular weight and degree of acetylation on the release of nitric oxide from chitosan–nitric oxide adducts (2010) J Appl Polym Sci, 117, pp. 2183-2188
dc.descriptionWang, S.H., Zhang, H., Jianga, S.J., Zhang, L., He, Q.Y., Effects of the nitric oxide donor sodium nitroprusside on antioxidant enzymes in wheat seedling roots under nickel stress (2010) Russ J Plant Physiol, 57, pp. 833-839
dc.descriptionWang, Y., Lin, A., Loake, G.J., Chu, C., H2o2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species (2013) J Integr Plant Biol, 55, pp. 202-208
dc.descriptionWendehenne, D., Hancock, J.T., New frontiers in nitric oxide biology in plant (2011) Plant Sci, 181, pp. 507-508
dc.descriptionWiesman, Z., Ben Dom, N., Sharvit, E., Grinberg, S., Linder, C., Novel cationic vesicle platform derived from vernonia oil for efficient delivery of dna through plant cuticle membranes (2007) J Biotechnol, 130, pp. 85-94
dc.descriptionYoo, J., Lee, C., (2006), http://www.aapsj.org/abstracts/AM_2006/staged/AAPS,001991.PDFZagorchev, L., Seal, C.E., Kranner, I., Odjakova, M., A central role for thiols in plant tolerance to abiotic stress (2013) Int J Mol Sci, 14, pp. 7405-7432
dc.descriptionZhang, L., Wang, Y., Zhao, L., Shi, S., Zhang, L., Involvement of nitric oxide in light-mediated greening of barley seedlings (2006) J Plant Phys, 163, pp. 818-826
dc.descriptionZhang, X.Y., Dong, Y.J., Qiu, X.K., Hu, G.Q., Wang, Y.H., Exogenous nitric oxide alleviates iron-deficiency chlorosis in peanut growing on calcareous soil (2012) Plant Soil Environ, 58, pp. 111-120
dc.descriptionZheng, C., Jiang, D., Liu, F., Dai, T., Liu, W., Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity (2009) Environ Exp Bot, 67, pp. 222-227
dc.descriptionZhu, H., Han, J., Xiao, J.Q., Jin, Y., Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants (2008) J Environ Monitor, 10, pp. 713-717
dc.descriptionZhukovskii, V.A., Problems and prospects for development and production of surgical suture materials (2008) Fibre Chem, 40, pp. 208-216
dc.descriptionZou, T., Zheng, L.P., Yuan, H.Y., Yuan, Y.F., Wang, J.W., The nitric oxide production and nadphdiaphorase activity in root tips of vicia faba l. Under copper toxicity (2012) Plant Omics J, 5, pp. 115-121
dc.description
dc.description
dc.languageen
dc.publisherSpringer International Publishing
dc.relationNanotechnologies in Food and Agriculture
dc.rightsfechado
dc.sourceScopus
dc.titleEmerging Role Of Nanocarriers In Delivery Of Nitric Oxide For Sustainable Agriculture
dc.typeCapítulos de libros


Este ítem pertenece a la siguiente institución