Artículos de revistas
Rh-decorated Ptiro<inf>x</inf> Nanoparticles For Glycerol Electrooxidation: Searching For A Stable And Active Catalyst
Registro en:
Applied Catalysis B: Environmental. Elsevier, v. 181, p. 445 - 455, 2016.
9263373
10.1016/j.apcatb.2015.08.021
2-s2.0-84939605626
Institución
Resumen
We report a fast method of producing rhodium-decorated platinum nanoparticles (NPs) containing iridium oxides (IrO<inf>x</inf>) to be used in the glycerol electrooxidation reaction. We synthesize PtIrO<inf>x</inf>/C electrocatalysts of different atomic compositions dispersed on Carbon Vulcan XC-72R® by using the fast polyol method assisted by microwaves. Afterwards, PtIrO<inf>x</inf>/C was potentiodynamically decorated by Rh (Rh/PtIrO<inf>x</inf>/C). The NPs are characterized by energy dispersive X-ray analysis, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. The electrooxidation of glycerol was investigated in acid medium by cyclic voltammetry and chronoamperometry. The electrochemical stability of Rh/PtIrO<inf>x</inf>/C NPs was evaluated by following a degradation test protocol, which consists in exhaustive cyclic voltammetries. Our results show that the presence of iridium oxides in the architecture of platinum enhances the electrochemical stability of the catalyst by avoiding agglomeration effects. Moreover, the presence of rhodium catalyzes the glycerol electrooxidation reaction. These results help understanding the role of Rh and IrO<inf>x</inf> in the glycerol electrooxidation and provide new insights for designing nanomaterials with improved stability and activity. © 2015 Elsevier B.V. 181
445 455 Zhou, W., Zhou, Z., Song, S., Li, W., Sun, G., Tsiakaras, P., Xin, Q., (2003) Appl. Catal. B, 46, pp. 273-285 Holade, Y., Morais, C., Servat, K., Napporn, T.W., Kokoh, K.B., (2013) ACS Catal., 3, pp. 2403-2411 Giz, M.J., Camara, G.A., (2009) J. Electroanal. Chem., 625, pp. 117-122 Camara, G.A., Iwasita, T., (2005) J. Electroanal. Chem., 578, pp. 315-321 Fernández, P.S., Martins, M.E., Camara, G.A., (2012) Electrochim. Acta, 66, pp. 180-187 Zalineeva, A., Serov, A., Padilla, M., Martinez, U., Artyushkova, K., Baranton, S., Coutanceau, C., Atanassov, P.B., (2014) J. Am. Chem. Soc., 136, pp. 3937-3945 Martins, C.A., Giz, M.J., Camara, G.A., (2011) Electrochim. Acta, 56, pp. 4549-4553 Fernández, P.S., Martins, M.E., Martins, C.A., Camara, G.A., (2012) Electrochem. Commun., 15, pp. 14-17 Martins, C.A., Fernández, P.S., Troiani, H.E., Martins, M.E., Camara, G.A., (2014) J. Electroanal. Chem., pp. 231-236 Gomes, J.F., Tremiliosi-Filho, G., (2011) Electrocatalysis, 2, pp. 96-105 Fernández, P.S., Martins, C.A., Martins, M.E., Camara, G.A., (2013) Electrochim. Acta, 112, pp. 686-691 Kwon, Y., Schouten, K.J.P., Koper, M.T.M., (2011) ChemCatChem, 3, pp. 1176-1185 Kwon, Y., Birdja, Y., Spanos, I., Rodriguez, P., Koper, M.T.M., (2012) ACS Catal., 2, pp. 759-764 Li, M., Zhou, W.P., Marinkovic, N.S., Sasaki, K., Adzic, R.R., (2013) Electrochim. Acta, 104, pp. 454-461 Erini, N., Loukrakpam, R., Petkov, V., Baranova, E.A., Yang, R., Teschner, D., Huang, Y., Strasser, P., (2014) ACS Catal., 4, pp. 1859-1867 Silva, L.C., Maia, G., Passos, R.R., de Souza, E.A., Camara, G.A., Giz, M.J., (2013) Electrochim Acta, 112, pp. 612-619 Ferreira, R.S., Giz, M.J., Camara, G.A., (2013) J. Electroanal. Chem., 697, pp. 15-20 Kowal, A., Li, M., Shao, M., Sasaki, K., Vukmirovic, M.B., Zhang, J., Marinkovic, N.S., Adzic, R.R., (2009) Nat. Mater., 8, pp. 325-330 Li, M., Kowal, A., Sasaki, K., Marinkovic, N., Su, D., Korach, E., Liu, P., Adzic, R.R., (2010) Electrochim. Acta, 55, pp. 4331-4338 De Souza, R.F.B., Parreira, L.S., Rascio, D.C., Silva, J.C.M., Teixeira-Neto, E., Calegaro, M.L., Spinace, E.V., Santos, M.C., (2010) J. Power Sources, 195, pp. 1589-1593 Meier, J.C., Galeano, C., Katsounaros, I., Witte, J., Bongard, H.J., Topalov, A.A., Baldizzone, C., Mayrhofer, K.J.J., (2014) Beilstein J. Nanotechnol., 5, pp. 44-67 Antolini, E., (2014) ACS Catal., 4, pp. 1426-1440 Wesselmark, M., Wickman, B., Lagergren, C., Lindbergh, G., (2013) Electrochim. Acta, 111, pp. 152-159 Reier, T., Oezaslan, M., Strasser, P., (2012) ACS Catal., 2, pp. 1765-1772 Ribeiro, J., dos Anjos, D.M., Kokoh, K.B., Coutanceau, C., Léger, J.-M., Olivi, P., de Andrade, A.R., Tremiliosi-Filho, G., (2007) Electrochim. Acta, 52, pp. 6997-7006 Ehab, N., Sawy, E., Molero, H.M., Birss, V.I., (2014) Electrochim. Acta, 117, pp. 202-210 Armendariz, V., Martins, C.A., Troiani, H.E., Oliveira, L.C., Stropa, J.M., Camara, G.A., Martins, M.E., Fernández, P.S., (2014) Electrocatalysis, 5, pp. 279-287 Schnaidt, J., Heinen, M., Denot, D., Jusys, Z., Behm, J., (2011) J. Electroanal. Chem., 661, pp. 250-264 Coutanceau, C., Urchaga, P., Brimaud, S., Baranton, S., (2012) Electrocatalysis, 3, pp. 75-87 Fernández, P.S., Ferreira, D.S., Martins, C.A., Troiani, H.E., Câmara, G.A., Martins, M.E., (2013) Electrochim. Acta, 98, pp. 25-31 Martins, C.A., Fernández, P.S., Troiani, H.E., Martins, M.E., Arenillas, A., Camara, G.A., (2014) Electrocatalysis, 5, pp. 204-212 Shirley, D.A., (1972) Phys. Rev. B, 5, pp. 4709-4714 Scofield, J.H., (1976) J. Electron Spectrosc., 8, pp. 129-137 Cheng, J., Zhang, H., Ma, H., Zhong, H., Zou, Y., (2010) Electrochim. Acta, 55, pp. 1855-1861 Jang, I., Hwang, I., Tak, Y., (2013) Electrochim. Acta, 90, pp. 148-156 Siracusano, S., Baglio, V., Stassi, A., Ornelas, R., Antonucci, V., Arico, A.S., (2011) Int. J. Hydrogen Energ., 36, pp. 7822-7831 Wang, L., Han, Q., Hu, S., Li, D., Zhang, P., Chen, S., Xu, J., Liu, B., (2015) Appl. Catal. B: Environ., 164, pp. 128-134 Lomocso, T.L., Baranova, E.A., (2011) Electrochim. Acta, 56, pp. 8551-8558 Swanson, H.E., Tatge, E., (1953) Nat. Bur. Std. U.S, Circ., 539, pp. 69-70 da Silva, S.G., Assumpção, M.H.M.T., de Souza, R.F.B., Buzzo, G.S., Spinacé, E.V., Neto, A.O., Silva, J.C.M., (2014) Electrocatalysis, 4, pp. 438-444 Ungar, T., Gubicza, J., Ribarik, G., Pantea, C., Zerda, T.W., (2002) Carbon, 40, pp. 929-937 Podlovchenko, B., Shterev, G., Semkova, R., Kolyadko, E., (1990) Electrochim. Acta, 35, pp. 191-197 Elzanowska, H., Miasek, E., Birss, V.I., (2008) Electrochim. Acta, 53, pp. 2706-2715 Pauporté, T., Andolfatto, F., Durand, R., (1999) Electrochim. Acta, 45, pp. 431-439 Conway, B.E., Mozota, J., (1983) Electrochim. Acta, 28, pp. 9-16 Láng, G.G., Horányi, G., (2003) J. Electroanal. Chem., 552, pp. 197-211 Kaghazchi, P., Simeone, F.C., Soliman, K.A., Kibler, L.A., Jacob, T., (2008) Faraday Discuss., 140, pp. 69-80 Gomes, J.F., Martins, C.A., Giz, M.J., Tremiliosi-Filho, G., Camara, G.A., (2013) J. Catal., 301, pp. 154-161 Gomes, J.F., de Paula, F.B.C., Gasparotto, L.H.S., Tremiliosi-Filho, G., (2012) Electrochim. Acta, 76, pp. 88-93 Fernández, P.S., Martins, C.A., Angelucci, C.A., Gomes, J.F., Camara, G.A., Martins, M.E., Tremiliosi-Filho, G., (2014) ChemElectroChem, 2, pp. 263-268 Chen, W., Chen, S., (2011) J. Mater. Chem., 21, pp. 9169-9178 Vidal-Iglesias, F.J., López-Cudero, A., Solla-Gullón, J., Feliu, J.M., (2013) Angew. Chem., 125, pp. 998-1001 Martins, C.A., Fernández, P.S., de Lima, F., Troiani, H.E., Martins, M.E., Arenillas, A., Maia, G., Camara, G.A., (2014) Nano Energ., 9, pp. 142-151 Park, Y.C., Kakinuma, K., Uchida, M., Uchida, H., Watanabe, M., (2014) Electrochim. Acta, 123, pp. 84-92 Shao-Horn, Y., Sheng, W.C., Chen, S., Ferreira, P.J., Holby, E.F., Morgan, D., (2007) Top. Catal., 46, pp. 285-305 Mathias, M., Makharia, R., Gasteiger, H., Conley, J., Fuller, T., Gittleman, C., Kocha, S., Yu, P., (2005) Electrochem. Soc. Interface, 14, pp. 24-35