dc.date2015
dc.date2016-06-03T20:13:15Z
dc.date2016-06-03T20:13:15Z
dc.date.accessioned2018-03-29T01:32:24Z
dc.date.available2018-03-29T01:32:24Z
dc.identifier
dc.identifierApplied Catalysis B: Environmental. Elsevier, v. 179, p. 333 - 343, 2015.
dc.identifier9263373
dc.identifier10.1016/j.apcatb.2015.05.036
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84930194885&partnerID=40&md5=acde3b3f22dc8af74ad3022f05f46202
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/238007
dc.identifier2-s2.0-84930194885
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1304668
dc.descriptionSiO<inf>2</inf>@TiO<inf>2</inf> core@shell nanoparticles (CSNs) have recently attracted great attention due to their unique and tunable optical and photocatalytic properties and higher dispersion of the supported TiO<inf>2</inf>. Thus, development of facile, reproducible and effective methods for the synthesis of SiO<inf>2</inf>@TiO<inf>2</inf> CSNs and a fundamental understanding of their improved properties, derived from combination of different core and shell materials, is of great importance. Here we report a very facile and reproducible method for the synthesis of CSNs with a control of particle morphology, crystallinity and phase selectivity, and provide important insight into the effect of core@shell configuration on the photocatalytic and optical properties of SiO<inf>2</inf>@TiO<inf>2</inf> CSNs. For this purpose, synthesis of highly dispersed anatase nanocrystals (~5nm) of high surface area was carried out by supporting these nanocrystals on silica sub-micron spheres in the form of a porous shell of controlled thickness (10-30nm). The amorphous TiO<inf>2</inf> shell was crystallized into anatase using a low temperature (105°C) hydrothermal treatment. The resulting CSNs were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, x-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, zeta-potential measurements, BET surface area and electron paramagnetic resonance measurements. Both experimental data and theoretical simulations showed that due to the size of the complete particle (SiO<inf>2</inf>@TiO<inf>2</inf>), the general optical response of the system is regulated by Rayleigh scattering, exhibiting a red-shift of the extinction spectra as shell-thickness increases. The SiO<inf>2</inf>@TiO<inf>2</inf> configuration leads to efficient light harvesting by increasing the optical path inside the core@shell particles. An enhanced photoactivity and good recyclability of SiO<inf>2</inf>@TiO<inf>2</inf> CSNs was demonstrated compared to unsupported TiO<inf>2</inf>. Together with BET surface area measurements, direct assessment of the density of photocatalytic sites probed by electron paramagnetic resonance measurements was used to provide insight into the enhanced photocatalytic activity of CSNs, which is also understood as a consequence of Rayleigh scattering, relative enhancement of the adsorption of organic molecules on the core@shell photocatalyst surface and increased optical path inside the SiO<inf>2</inf>@TiO<inf>2</inf> particles. All these aspects are directly influenced by the core@shell configuration of SiO<inf>2</inf>@TiO<inf>2</inf> samples. © 2015 Elsevier B.V.
dc.description179
dc.description
dc.description333
dc.description343
dc.descriptionLinsebigler, A.L., Lu, G., Yates, J.T., Yates, J.T., Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results (1995) Chem. Rev., 95, pp. 5-758
dc.descriptionFujishima, A., Zhang, X., Tryk, D., TiO<inf>2</inf> photocatalysis and related surface phenomena (2008) Surf. Sci. Rep., 63, pp. 515-582
dc.descriptionPakdel, E., Daoud, W., Self-cleaning cotton functionalized with TiO<inf>2</inf>/SiO<inf>2</inf>: focus on the role of silica (2013) J. Colloid Interface Sci., 401, pp. 1-7
dc.descriptionSon, S., Hwang, S.H., Kim, C., Yun, J.Y., Jang, J., Designed synthesis of SiO<inf>2</inf>/TiO<inf>2</inf> core/shell structure as light scattering material for highly efficient dye-sensitized solar cells (2013) ACS Appl. Mater. Interfaces, 5, pp. 4815-4820
dc.descriptionLi, Y., Leung, P., Yao, L., Song, Q.W., Newton, E., Antimicrobial effect of surgical masks coated with nanoparticles (2006) J. Hosp. Infect., 62, pp. 58-63
dc.descriptionSheel, D.W., Evans, P., Photoactive and antibacterial TiO<inf>2</inf> thin films on stainless steel (2007) Surf. Coatings Technol., 201, pp. 9319-9324
dc.descriptionSaravanan, K., Ananthanarayanan, K., Balaya, P., Mesoporous TiO<inf>2</inf> with high packing density for superior lithium storage (2010) Energy Environ. Sci., 3
dc.descriptionBanerjee, S., Gopal, J., Muraleedharan, P., Tyagi, A., Raj, B., Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy (2006) Curr. Sci., 90, pp. 1378-1383
dc.descriptionAugustynski, J., The role of the surface intermediates in the photoelectrochemical behavior of anatase and rutile TiO<inf>2</inf> (1993) Electrochim. Acta, 38, pp. 43-46
dc.descriptionMandzy, N., Grulke, E., Druffel, T., Breakage of TiO<inf>2</inf> agglomerates in electrostatically stabilized aqueous dispersions (2005) Powder Technol., 160, pp. 121-126
dc.descriptionHanaor, D.A.H., Assadi, M.H.N., Li, S., Yu, A.B., Sorrell, C.C., Ab initio study of phase stability in doped TiO<inf>2</inf> (2012) Comput. Mech., 50, pp. 185-194
dc.descriptionRaj, K., Viswanathan, B., Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile (2009) Indian J. Chem., 48, pp. 1378-1382
dc.descriptionSatterfield, C.N., (1991) Heterogeneous Catalysis Industrial Practice, , McGraw-Hill, New York
dc.descriptionHerrmann, J., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants (1999) Catal. Today, 53, pp. 115-129
dc.descriptionHanprasopwattana, A., Srinivasan, S., Sault, A.G., Datye, A.K., Titania coatings on monodisperse silica spheres (characterization using 2-propanol dehydration and TEM) (1996) Langmuir, 12, pp. 3173-3179
dc.descriptionHanprasopwattana, A., Rieker, T., Sault, A., Datye, A., Morphology of titania coatings on silica gel (1997) Catal. Lett., 45, pp. 165-175
dc.descriptionLi, A., Jin, Y., Muggli, D., Pierce, D.T., Aranwela, H., Marasinghe, G.K., Nanoscale effects of silica particle supports on the formation and properties of TiO<inf>2</inf> nanocatalysts (2013) Nanoscale, 5, pp. 5854-5862
dc.descriptionOhno, T., Numakura, K., Itoh, H., Suzuki, H., Matsuda, T., Control of the quantum size effect of TiO<inf>2</inf>-SiO<inf>2</inf> hybrid particles (2009) Mater. Lett., 63, pp. 1737-1739
dc.descriptionJoo, J.B., Lee, I., Dahl, M., Moon, G.D., Zaera, F., Yin, Y., Controllable synthesis of mesoporous TiO<inf>2</inf> hollow shells: toward an efficient photocatalyst (2013) Adv. Funct. Mater., 23, pp. 4246-4254
dc.descriptionJoo, J.B., Zhang, Q., Lee, I., Dahl, M., Zaera, F., Yin, Y., Mesoporous anatase titania hollow nanostructures though silica-protected calcination (2012) Adv. Funct. Mater., 22, pp. 166-174
dc.descriptionWei, S., Wang, Q., Zhu, J., Sun, L., Lin, H., Guo, Z., Multifunctional composite core-shell nanoparticles (2011) Nanoscale, 3, p. 4474
dc.descriptionZhang, Q., Lee, I., Joo, J.I.B., Zaera, F., Core-shell nanostructured catalysts (2013) Acc. Chem. Res., 46, pp. 1816-1824
dc.descriptionLi, W., Zhao, D., Extension of the stöber method to construct mesoporous SiO<inf>2</inf> and TiO<inf>2</inf> shells for uniform multifunctional core-shell structures (2013) Adv. Mater., 25, pp. 142-149
dc.descriptionJankiewicz, B.J., Jamiola, D., Choma, J., Jaroniec, M., Silica-metal core-shell nanostructures (2012) Adv. Colloid Interface Sci., 170, pp. 28-47
dc.descriptionIler, R.K., (1978) The Chemistry Of Silica, , Wiley-Interscience, New York
dc.descriptionFink, A., Stöber, W., Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range (1968) J. Colloid Interface Sci., 26, pp. 62-69
dc.descriptionJoo, J.B., Zhang, Q., Dahl, M., Zaera, F., Yin, Y., Synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide shells (2012) J. Mater. Res., 28, pp. 2-368
dc.descriptionPeriyat, P., Baiju, K.V., Mukundan, P., Pillai, P.K., Warrier, K.G.K., High temperature stable mesoporous anatase TiO<inf>2</inf> photocatalyst achieved by silica addition (2008) Appl. Catal. A Gen., 349, pp. 13-19
dc.descriptionRasalingam, S., Peng, R., Koodali, R.T., Removal of hazardous pollutants from wastewaters: applications of TiO<inf>2</inf>-SiO<inf>2</inf> mixed oxide materials (2014) J. Nanomater., 42
dc.descriptionAnderson, C., Bard, A.J., An improved photocatalyst of TiO<inf>2</inf>/SiO<inf>2</inf> prepared by a Sol-gel synthesis (1995) J. Phys. Chem., 99, pp. 9882-9885
dc.descriptionCarp, O., Huisman, C.L., Reller, A., Photoinduced reactivity of titanium dioxide (2004) Prog. Solid State Chem., 32, pp. 33-177
dc.descriptionWest, A.R., (1984) Solid State Chemistry and its Applications, , Wiley, Chichester [West Sussex] New York
dc.descriptionGross, T., Ramm, M., Sonntag, H., Unger, W., Weijers, H.M., Adem, E.H., An XPS analysis of different SiO<inf>2</inf> modifications employing a C 1s as well as an Au 4f7/2 static charge reference (1992) Surf. Interface Anal., 18, pp. 59-64
dc.descriptionParks, G.A., The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems (1965) Chem. Rev., 65, pp. 177-198
dc.descriptionRuiz, P., Delmon, B., Koch, B., Castillo, R., Influence of preparation methods on the texture and structure of titania supported on silica (1994) J. Mater. Chem., 4, pp. 903-906
dc.descriptionGil-Llambias, F.J., Escudey-Castro, A.M., Use of zero point charge measurements in determining the apparent surface coverage of molybdena in MoO<inf>3</inf>/(-Al<inf>2</inf>O<inf>3</inf> catalysts (1982) J. Chem. Soc. Chem. Commun., 47, pp. 8-479
dc.descriptionUllah, S., Acuña, J.J.S., Pasa, A.A., Bilmes, S.A., Vela, M.E., Benitez, G., Photoactive layer-by-layer films of cellulose phosphate and titanium dioxide containing phosphotungstic acid (2013) Appl. Surf. Sci., 277, pp. 111-120
dc.descriptionEwing, G., (2005) Analytical Instrumentation Handbook, , Marcel Dekker, New York
dc.descriptionLivage, J., Henry, M., Sanchez, C., Sol-gel chemistry of transition metal oxides (1988) Prog. Solid State Chem., 18, pp. 259-341
dc.descriptionEgerton, R.F., (2005) Physical Principles of Electron Microscopy, , Springer, US, Boston, MA
dc.descriptionDjerdj, I., Tonejc, A.M., Structural investigations of nanocrystalline TiO<inf>2</inf> samples (2006) J. Alloys Compd., 413, pp. 159-174
dc.descriptionLeofanti, G., Padovan, M., Tozzola, G., Venturelli, B., Surface area and pore texture of catalysts (1998) Catal. Today, 41, pp. 207-219
dc.descriptionRegazzoni, A., Mandelbaum, P., Matsuyoshi, M., Schiller, S., Bilmes, S.A., Blesa, M., Adsorption and photooxidation of salicylic acid on titanium dioxide: a surface complexation description (1998) Langmuir, 14, p. 868
dc.descriptionMinero, C., Catozzo, F., Pelizzetti, E., Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions (1992) Langmuir, 8, pp. 481-486
dc.descriptionFriesen, D.A., Morello, L., Headley, J.V., Langford, C.H., Factors influencing relative efficiency in photo-oxidations of organic molecules by Cs3PW12O40 and TiO<inf>2</inf> colloidal photocatalysts (2000) J. Photochem. Photobiol. A Chem., 133, pp. 213-220
dc.descriptionXu, Y., Langford, C., UV-or visible-light-induced degradation of X3B on TiO<inf>2</inf> nanoparticles: the influence of adsorption (2001) Langmuir, 17, pp. 897-902
dc.descriptionGao, X., Wachs, I.E., Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties (1999) Catal. Today, 51, pp. 233-254
dc.descriptionMurashkevich, A.N., Lavitskaya, A.S., Barannikova, T.I., Zharskii, I.M., Infrared absorption spectra and structure of TiO<inf>2</inf>-SiO<inf>2</inf> composites (2008) J. Appl. Spectrosc., 75, pp. 730-734
dc.descriptionAntcliff, K.L., Murphy, D.M., Griffiths, E., Giamello, E., The interaction of H<inf>2</inf>O<inf>2</inf> with exchanged titanium oxide systems (TS-1, TiO<inf>2</inf>, [Ti]-APO-5, Ti-ZSM-5), Phys (2003) Chem. Chem. Phys., 5, pp. 4306-4316
dc.descriptionBohren, C.F., Huffman, D.R., (1998) Absorption and Scattering of Light by Small Particles, , Wiley-VCH Verlag GmbH, Weinheim, Germany
dc.descriptionTompkins, H., McGahan, W., (1999) Spectroscopic Ellipsometry and Reflectometry: a User's Guide, , Wiley-Interscience, New York
dc.descriptionDjurisic, A.B., Li, E.H., Modeling the index of refraction of insulating solids with a modified lorentz oscillator model (1998) Appl. Opt., 37, pp. 5291-5297
dc.descriptionBrus, L.E., A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites (1983) J. Chem. Phys., 79
dc.descriptionAnpo, M., Shima, T., Kodama, S., Kubokawa, Y., Photocatalytic hydrogenation of CH<inf>3</inf>CCH with H<inf>2</inf>O on samll-particle TiO<inf>2</inf>: size quantization and reaction intermediates (1987) J. Phys. Chem., 91, pp. 4305-4310
dc.descriptionLin, H., Huang, C., Li, W., Ni, C., Shah, S., Tseng, Y., Size dependency of nanocrystalline TiO<inf>2</inf> on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol (2006) Appl. Catal. B Environ., 68, pp. 1-11
dc.descriptionShen, Z.-Y., Li, L.-Y., Li, Y., Wang, C.-C., Fabrication of hydroxyl group modified monodispersed hybrid silica particles and the h-SiO<inf>2</inf>/TiO<inf>2</inf> core/shell microspheres as high performance photocatalyst for dye degradation (2011) J. Colloid Interface Sci., 354, pp. 196-201
dc.descriptionLi, X., Wu, X., He, G., Sun, J., Xiao, W., Tan, Y., Microspheroidization treatment of macroporous TiO<inf>2</inf> to enhance its recycling and prevent membrane fouling of photocatalysis - membrane system (2014) Chem. Eng. J., 251, pp. 58-68
dc.descriptionPagel, D., Aggergation and deaggregation in TiO<inf>2</inf> (need be corrected) (2007) J. Phys. Chem. C, 111, pp. 4458-4464
dc.descriptionHirano, M., Ota, K., Iwata, H., Formation of anatase (TiO<inf>2</inf>)/Silica (SiO<inf>2</inf>) composite nanoparticles with high phase stability of 1300°C from acidic solution by hydrolysis under hydrothermal condition (2004) Chem. Mater., 16, pp. 3725-3732
dc.descriptionWang, Y., Chen, E., Lai, H., Lu, B., Hu, Z., Qin, X., Enhanced light scattering and photovoltaic performance for dye-sensitized solar cells by embedding submicron SiO<inf>2</inf>/TiO<inf>2</inf> core/shell particles in photoanode (2013) Ceram. Int., 39, pp. 5407-5413
dc.description
dc.description
dc.languageen
dc.publisherElsevier
dc.relationApplied Catalysis B: Environmental
dc.rightsfechado
dc.sourceScopus
dc.titleEnhanced Photocatalytic Properties Of Core@shell Sio<inf>2</inf>@tio<inf>2</inf> Nanoparticles
dc.typeArtículos de revistas
dc.typeReview


Este ítem pertenece a la siguiente institución