dc.date | 2016 | |
dc.date | 2016-06-03T20:13:12Z | |
dc.date | 2016-06-03T20:13:12Z | |
dc.date.accessioned | 2018-03-29T01:32:21Z | |
dc.date.available | 2018-03-29T01:32:21Z | |
dc.identifier | | |
dc.identifier | Journal Of Catalysis. Academic Press Inc., v. 334, p. 34 - 41, 2016. | |
dc.identifier | 219517 | |
dc.identifier | 10.1016/j.jcat.2015.11.010 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84949944568&partnerID=40&md5=eec937e1d96971a67c8c21b76b422bb8 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/237995 | |
dc.identifier | 2-s2.0-84949944568 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1304656 | |
dc.description | The materials derived from MWW layered precursor (MCM-22, MCM-36 and ITQ-2) were synthesized with molar ratio SiO2/Al2O3 = 30, characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), textural analysis by N2 physisorption, temperature programmed desorption of ammonia (NH3-TPD) and diffuse reflectance infrared spectroscopy (DRIFTS) of adsorbed pyridine and evaluated in gas phase glycerol dehydration to acrolein. The delaminated material (ITQ-2) has presented better catalytic performance than MCM-22 zeolite or MCM-36 pillared material, in both glycerol conversion and acrolein selectivity. These results were interpreted based on the textural properties and acidity changes. ITQ-2 excellent performance is due to higher accessibility and improved acidity when compared to pillared MCM-36 or parent MCM-22 zeolite. Long-term stability under either nitrogen or air co-feeding was investigated for ITQ-2. © 2015 Elsevier Inc. All rights reserved. | |
dc.description | 334 | |
dc.description | | |
dc.description | 34 | |
dc.description | 41 | |
dc.description | Talebian-Kiakalaieh, A., Amin, N.A.S., Hezaveh, H., Glycerol for renewable acrolein production by catalytic dehydration (2014) Renew. Sustain. Energy Rev., 40, pp. 28-59 | |
dc.description | Katryniok, B., Paul, S., Dumeignil, F., Recent developments in the field of catalytic dehydration of glycerol to acrolein (2013) ACS Catal., 3, pp. 1819-1834 | |
dc.description | Omata, K., Izumi, S., Murayama, T., Ueda, W., Hydrothermal synthesis of W-Nb complex metal oxides and their application to catalytic dehydration of glycerol to acrolein (2013) Catal. Today, 201, pp. 7-11 | |
dc.description | Ulgen, A., Hoelderich, W.F., Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts (2011) Appl. Catal. A, 400, pp. 34-38 | |
dc.description | Katryniok, B., Paul, S., Belliere-Baca, V., Rey, P., Dumeignil, F., Glycerol dehydration to acrolein in the context of new uses of glycerol (2010) Green Chem., 12, pp. 2079-2098 | |
dc.description | Kim, Y.T., Jung, K.D., Park, E.D., A comparative study for gas-phase dehydration of glycerol over H-zeolites (2011) Appl. Catal. A, 393, pp. 275-287 | |
dc.description | Kim, Y.T., Jung, K.D., Park, E.D., Gas-phase dehydration of glycerol over ZSM-5 catalysts (2010) Microporous Mesoporous Mater., 131, pp. 28-36 | |
dc.description | Jia, C.J., Liu, Y., Schmidt, W., Lu, A.H., Schuth, F., Small-sized HZSM-5 zeolite as highly active catalyst for gas phase dehydration of glycerol to acrolein (2010) J. Catal., 269, pp. 71-79 | |
dc.description | Díaz, U., Layered materials with catalytic applications: Pillared and delaminated zeolites from MWW precursors (2012) ISRN Chem. Eng., 20. , ID537164 | |
dc.description | Carriço, C.S., Cruz, F.T., Santos, M.B., Pastore, H.O., Andrade, H.M.C., Mascarenhas, A.J.S., Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to acrolein (2013) Microporous Mesoporous Mater., 181, pp. 74-82 | |
dc.description | Lawton, S., Leonowicz, M.E., Partridge, R., Chu, P., Rubin, M.K., (1998) Microporous Mesoporous Mater., 23, pp. 109-117 | |
dc.description | Kresge, C.T., Roth, W.J., Simmons, K.G., Vartuli, J.C., (1993) Crystalline Oxide Material, 5, pp. 229-341. , US Patent to Mobil Oil Corporation | |
dc.description | Roth, W.J., Kresge, C.T., Vartuli, J.C., Leonowicz, M.E., Fung, A.S., Mccullen, S.B., MCM-36: the first pillared molecular sieve with zeolite properties (1995) Stud. Surf. Sci. Catal., 94, pp. 301-308 | |
dc.description | He, Y.J., Nivarthy, G.S., Eder, F., Seshan, K., Lercher, J.A., Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36 (1998) Microporous Mesoporous Mater., 25, pp. 207-224 | |
dc.description | Corma, A., Fornés, V., Pergher, S.B., Maesen, T.L.M., Burglass, J.G., Delaminated zeolite precursors as selective acidic catalysts (1998) Nature, 396, pp. 353-356 | |
dc.description | Corma, A., Fornés, V., Martínez-Triguero, J., Pergher, S.B., Delaminated zeolites: Combining the benefits of zeolites and mesoporous materials for catalytic uses (1999) J. Catal., 186, pp. 57-63 | |
dc.description | Frontera, P., Testa, F., Aiello, R., Candamano, S., Nagy, J.B., Transformation of MCM-22(P) into ITQ-2: the role of framework aluminium (2007) Microporous Mesoporous Mater., 106, pp. 107-114 | |
dc.description | Min, H.-K., Park, M.B., Hong, S.B., Methanol to olefin conversion over H-MCM-22 and H-ITQ-2 zeolites (2010) J. Catal., 271, pp. 186-194 | |
dc.description | Zhang, Z., Zhu, W., Zai, S., Jia, M., Zhang, W., Wang, Z., Synthesis, characterization and catalytic properties of MCM-36 pillared via the MCM-56 precursor (2013) J. Porous Mater., 20, pp. 531-538 | |
dc.description | Wang, J., Tu, X., Hua, W., Yue, Y., Gao, Z., Role of the acidity and porosity of MWW-type zeolites in liquid-phase reaction (2011) Microporous Mesoporous Mater., 142, pp. 82-90 | |
dc.description | Jung, H.J., Park, S.S., Shin, C.H., Park, Y.K., Hong, S.B., Comparative catalytic studies on the conversion of 1-butene and n-butane to isobutene over MCM-22 and ITQ-2 zeolites (2007) J. Catal., 245, pp. 65-74 | |
dc.description | Maheshwari, S., Martinez, C., Portilla, M.T., Llopis, F.J., Corma, A., Tsapatsis, M., Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36 (2010) J. Catal., 272, pp. 298-308 | |
dc.description | Concepción, P., Lopez, C., Martinez, A., Puntes, V.E., Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer-Tropsch synthesis reaction (2004) J. Catal., 228, pp. 321-332 | |
dc.description | Corma, A., Diaz, U., Fornés, V., Guil, J.M., Martínez-Triguero, J., Creyghton, E.J., Characterization and catalytic activity of MCM-22 and MCM-56 compared with ITQ-2 (2000) J. Catal., 191, pp. 218-224 | |
dc.description | Lacarriere, A., Luck, F., Swierczynski, D., Fajula, F., Hulea, V., Methanol to hydrocarbons over zeolites with MWW topology: Effect of zeolite texture and acidity (2011) Appl. Catal. A, 402, pp. 208-217 | |
dc.description | Antunes, M.M., Lima, S., Fernandes, A., Pillinger, M., Ribeiro, M.F., Valente, A.A., Aqueous-phase dehydration of xylose to furfural in the presence of MCM-22 and ITQ-2 solid acid catalysts (2012) Appl. Catal. A, 417-418, pp. 243-252 | |
dc.description | Gregg, S.J., Singh, K.S., (1982) Adsorption Surface Area and Porosity, , second ed. Academic Press London | |
dc.description | Rouquerol, J., Rouquerol, F., Singh, K.S.W., (1998) Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, , Academic Press London | |
dc.description | Wang, J., Jaenicke, S., Chuah, G.K., Hua, W.M., Yue, Y.H., Gao, Z., Acidity and porosity modulation of MWW type zeolites for Nopol production by Prins condensation (2011) Catal. Commun., 12, pp. 1131-1135 | |
dc.description | Yang, S.T., Kim, J.Y., Kim, J., Ahn, W.S., CO2 capture over amine-functionalized MCM-22, MCM-36 and ITQ-2 (2012) Fuel, 97, pp. 435-442 | |
dc.description | Dumitriu, E., Meloni, D., Monaci, R., Solinas, V., Liquid-phase alkylation of phenol with t-butanol over various catalysts derived from MWW-type precursors (2005) C. R. Chim., 8, pp. 441-456 | |
dc.description | Liu, B., Huo, H., Meng, Q., Gao, S., Synthesis of ITQ-2 zeolite under static conditions and its properties (2006) Sci. China B, 49, pp. 148-154 | |
dc.description | Barth, J.O., Jentys, A., Kornatowski, J., Lercher, J.A., Control of acid-base properties of new nanocomposite derivatives of MCM-36 by mixed oxide pillaring (2004) Chem. Mater., 16, pp. 724-730 | |
dc.description | Knözinger, H., (2008) Handbook of Heterogeneous Catalysis, 2, p. 1154. , G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, Wiley-VCH | |
dc.description | Wang, Z., Wang, L., Jiang, Y., Hunger, M., Huang, J., Cooperativity of Brønsted and Lewis acid sites on zeolite for glycerol dehydration (2014) ACS Catal., 4, pp. 1144-1147 | |
dc.description | De Pietre, M.K., Bonk, F.A., Rettori, C., Garcia, F.A., Pastore, H.O., Delaminated vanadoaluminosilicate with [V, Al]-ITQ-18 structure (2012) Microporous Mesoporous Mater., 156, pp. 244-256 | |
dc.description | De Pietre, M.K., Bonk, F.A., Rettori, C., Garcia, F.A., Pastore, H.O., [V, Al]-ITQ-6: Novel porous material and the effect of delamination conditions on V sites and their distribution (2011) Microporous Mesoporous Mater., 145, pp. 108-117 | |
dc.description | Park, H., Yun, Y.S., Kim, T.Y., Lee, K.R., Baek, J., Yi, J., Kinetics of the dehydration of glycerol over acid catalysts with an investigation of deactivation mechanism by coke (2015) Appl. Catal. B, 176-177, pp. 1-10 | |
dc.description | Dalla Costa, B.O., Querini, C.A., Isobutane alkylation with butenes in gas phase (2010) Chem. Eng. J., 162, pp. 829-835 | |
dc.description | Käldström, M., Kumar, N., Heikkilä, T., Murzin, D.Yu., Pillared H-MCM-36 mesoporous and H-MCM-22 microporous materials for conversion of levoglucosan: Influence of varying acidity (2011) Appl. Catal. A, 397, pp. 13-21 | |
dc.description | Martinuzzi, I., Azizi, Y., Devaux, J.-F., Trejak, S., Zahraa, O., Leclerc, J.-P., Reaction mechanism for glycerol dehydration in the gas phase over a solid acid catalyst determined with on-line gas chromatography (2014) Chem. Eng. Sci., 116, pp. 118-127 | |
dc.description | Decolatti, H.P., Dalla Costa, B.O., Querini, C.A., Dehydration of glycerol to acrolein using H-ZSM5 zeolite modified by alkali treatment with NaOH (2015) Microporous Mesoporous Mater., 204, pp. 180-189 | |
dc.description | Kim, Y.T., Jung, K.-D., Park, E.D., Gas-phase dehydration of glycerol over silica-alumina catalysts (2011) Appl. Catal. B, 107, pp. 177-187 | |
dc.description | Foo, G.S., Wei, D., Sholl, D.S., Sievers, C., Role of Lewis and Brönsted acid sites in the dehydration of glycerol over niobia (2014) ACS Catal., 4, pp. 3180-3192 | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | Academic Press Inc. | |
dc.relation | Journal of Catalysis | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Mww-type Catalysts For Gas Phase Glycerol Dehydration To Acrolein | |
dc.type | Artículos de revistas | |