dc.date2016
dc.date2016-06-03T20:13:12Z
dc.date2016-06-03T20:13:12Z
dc.date.accessioned2018-03-29T01:32:21Z
dc.date.available2018-03-29T01:32:21Z
dc.identifier
dc.identifierJournal Of Catalysis. Academic Press Inc., v. 334, p. 34 - 41, 2016.
dc.identifier219517
dc.identifier10.1016/j.jcat.2015.11.010
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84949944568&partnerID=40&md5=eec937e1d96971a67c8c21b76b422bb8
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/237995
dc.identifier2-s2.0-84949944568
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1304656
dc.descriptionThe materials derived from MWW layered precursor (MCM-22, MCM-36 and ITQ-2) were synthesized with molar ratio SiO2/Al2O3 = 30, characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), textural analysis by N2 physisorption, temperature programmed desorption of ammonia (NH3-TPD) and diffuse reflectance infrared spectroscopy (DRIFTS) of adsorbed pyridine and evaluated in gas phase glycerol dehydration to acrolein. The delaminated material (ITQ-2) has presented better catalytic performance than MCM-22 zeolite or MCM-36 pillared material, in both glycerol conversion and acrolein selectivity. These results were interpreted based on the textural properties and acidity changes. ITQ-2 excellent performance is due to higher accessibility and improved acidity when compared to pillared MCM-36 or parent MCM-22 zeolite. Long-term stability under either nitrogen or air co-feeding was investigated for ITQ-2. © 2015 Elsevier Inc. All rights reserved.
dc.description334
dc.description
dc.description34
dc.description41
dc.descriptionTalebian-Kiakalaieh, A., Amin, N.A.S., Hezaveh, H., Glycerol for renewable acrolein production by catalytic dehydration (2014) Renew. Sustain. Energy Rev., 40, pp. 28-59
dc.descriptionKatryniok, B., Paul, S., Dumeignil, F., Recent developments in the field of catalytic dehydration of glycerol to acrolein (2013) ACS Catal., 3, pp. 1819-1834
dc.descriptionOmata, K., Izumi, S., Murayama, T., Ueda, W., Hydrothermal synthesis of W-Nb complex metal oxides and their application to catalytic dehydration of glycerol to acrolein (2013) Catal. Today, 201, pp. 7-11
dc.descriptionUlgen, A., Hoelderich, W.F., Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts (2011) Appl. Catal. A, 400, pp. 34-38
dc.descriptionKatryniok, B., Paul, S., Belliere-Baca, V., Rey, P., Dumeignil, F., Glycerol dehydration to acrolein in the context of new uses of glycerol (2010) Green Chem., 12, pp. 2079-2098
dc.descriptionKim, Y.T., Jung, K.D., Park, E.D., A comparative study for gas-phase dehydration of glycerol over H-zeolites (2011) Appl. Catal. A, 393, pp. 275-287
dc.descriptionKim, Y.T., Jung, K.D., Park, E.D., Gas-phase dehydration of glycerol over ZSM-5 catalysts (2010) Microporous Mesoporous Mater., 131, pp. 28-36
dc.descriptionJia, C.J., Liu, Y., Schmidt, W., Lu, A.H., Schuth, F., Small-sized HZSM-5 zeolite as highly active catalyst for gas phase dehydration of glycerol to acrolein (2010) J. Catal., 269, pp. 71-79
dc.descriptionDíaz, U., Layered materials with catalytic applications: Pillared and delaminated zeolites from MWW precursors (2012) ISRN Chem. Eng., 20. , ID537164
dc.descriptionCarriço, C.S., Cruz, F.T., Santos, M.B., Pastore, H.O., Andrade, H.M.C., Mascarenhas, A.J.S., Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to acrolein (2013) Microporous Mesoporous Mater., 181, pp. 74-82
dc.descriptionLawton, S., Leonowicz, M.E., Partridge, R., Chu, P., Rubin, M.K., (1998) Microporous Mesoporous Mater., 23, pp. 109-117
dc.descriptionKresge, C.T., Roth, W.J., Simmons, K.G., Vartuli, J.C., (1993) Crystalline Oxide Material, 5, pp. 229-341. , US Patent to Mobil Oil Corporation
dc.descriptionRoth, W.J., Kresge, C.T., Vartuli, J.C., Leonowicz, M.E., Fung, A.S., Mccullen, S.B., MCM-36: the first pillared molecular sieve with zeolite properties (1995) Stud. Surf. Sci. Catal., 94, pp. 301-308
dc.descriptionHe, Y.J., Nivarthy, G.S., Eder, F., Seshan, K., Lercher, J.A., Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36 (1998) Microporous Mesoporous Mater., 25, pp. 207-224
dc.descriptionCorma, A., Fornés, V., Pergher, S.B., Maesen, T.L.M., Burglass, J.G., Delaminated zeolite precursors as selective acidic catalysts (1998) Nature, 396, pp. 353-356
dc.descriptionCorma, A., Fornés, V., Martínez-Triguero, J., Pergher, S.B., Delaminated zeolites: Combining the benefits of zeolites and mesoporous materials for catalytic uses (1999) J. Catal., 186, pp. 57-63
dc.descriptionFrontera, P., Testa, F., Aiello, R., Candamano, S., Nagy, J.B., Transformation of MCM-22(P) into ITQ-2: the role of framework aluminium (2007) Microporous Mesoporous Mater., 106, pp. 107-114
dc.descriptionMin, H.-K., Park, M.B., Hong, S.B., Methanol to olefin conversion over H-MCM-22 and H-ITQ-2 zeolites (2010) J. Catal., 271, pp. 186-194
dc.descriptionZhang, Z., Zhu, W., Zai, S., Jia, M., Zhang, W., Wang, Z., Synthesis, characterization and catalytic properties of MCM-36 pillared via the MCM-56 precursor (2013) J. Porous Mater., 20, pp. 531-538
dc.descriptionWang, J., Tu, X., Hua, W., Yue, Y., Gao, Z., Role of the acidity and porosity of MWW-type zeolites in liquid-phase reaction (2011) Microporous Mesoporous Mater., 142, pp. 82-90
dc.descriptionJung, H.J., Park, S.S., Shin, C.H., Park, Y.K., Hong, S.B., Comparative catalytic studies on the conversion of 1-butene and n-butane to isobutene over MCM-22 and ITQ-2 zeolites (2007) J. Catal., 245, pp. 65-74
dc.descriptionMaheshwari, S., Martinez, C., Portilla, M.T., Llopis, F.J., Corma, A., Tsapatsis, M., Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36 (2010) J. Catal., 272, pp. 298-308
dc.descriptionConcepción, P., Lopez, C., Martinez, A., Puntes, V.E., Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer-Tropsch synthesis reaction (2004) J. Catal., 228, pp. 321-332
dc.descriptionCorma, A., Diaz, U., Fornés, V., Guil, J.M., Martínez-Triguero, J., Creyghton, E.J., Characterization and catalytic activity of MCM-22 and MCM-56 compared with ITQ-2 (2000) J. Catal., 191, pp. 218-224
dc.descriptionLacarriere, A., Luck, F., Swierczynski, D., Fajula, F., Hulea, V., Methanol to hydrocarbons over zeolites with MWW topology: Effect of zeolite texture and acidity (2011) Appl. Catal. A, 402, pp. 208-217
dc.descriptionAntunes, M.M., Lima, S., Fernandes, A., Pillinger, M., Ribeiro, M.F., Valente, A.A., Aqueous-phase dehydration of xylose to furfural in the presence of MCM-22 and ITQ-2 solid acid catalysts (2012) Appl. Catal. A, 417-418, pp. 243-252
dc.descriptionGregg, S.J., Singh, K.S., (1982) Adsorption Surface Area and Porosity, , second ed. Academic Press London
dc.descriptionRouquerol, J., Rouquerol, F., Singh, K.S.W., (1998) Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, , Academic Press London
dc.descriptionWang, J., Jaenicke, S., Chuah, G.K., Hua, W.M., Yue, Y.H., Gao, Z., Acidity and porosity modulation of MWW type zeolites for Nopol production by Prins condensation (2011) Catal. Commun., 12, pp. 1131-1135
dc.descriptionYang, S.T., Kim, J.Y., Kim, J., Ahn, W.S., CO2 capture over amine-functionalized MCM-22, MCM-36 and ITQ-2 (2012) Fuel, 97, pp. 435-442
dc.descriptionDumitriu, E., Meloni, D., Monaci, R., Solinas, V., Liquid-phase alkylation of phenol with t-butanol over various catalysts derived from MWW-type precursors (2005) C. R. Chim., 8, pp. 441-456
dc.descriptionLiu, B., Huo, H., Meng, Q., Gao, S., Synthesis of ITQ-2 zeolite under static conditions and its properties (2006) Sci. China B, 49, pp. 148-154
dc.descriptionBarth, J.O., Jentys, A., Kornatowski, J., Lercher, J.A., Control of acid-base properties of new nanocomposite derivatives of MCM-36 by mixed oxide pillaring (2004) Chem. Mater., 16, pp. 724-730
dc.descriptionKnözinger, H., (2008) Handbook of Heterogeneous Catalysis, 2, p. 1154. , G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, Wiley-VCH
dc.descriptionWang, Z., Wang, L., Jiang, Y., Hunger, M., Huang, J., Cooperativity of Brønsted and Lewis acid sites on zeolite for glycerol dehydration (2014) ACS Catal., 4, pp. 1144-1147
dc.descriptionDe Pietre, M.K., Bonk, F.A., Rettori, C., Garcia, F.A., Pastore, H.O., Delaminated vanadoaluminosilicate with [V, Al]-ITQ-18 structure (2012) Microporous Mesoporous Mater., 156, pp. 244-256
dc.descriptionDe Pietre, M.K., Bonk, F.A., Rettori, C., Garcia, F.A., Pastore, H.O., [V, Al]-ITQ-6: Novel porous material and the effect of delamination conditions on V sites and their distribution (2011) Microporous Mesoporous Mater., 145, pp. 108-117
dc.descriptionPark, H., Yun, Y.S., Kim, T.Y., Lee, K.R., Baek, J., Yi, J., Kinetics of the dehydration of glycerol over acid catalysts with an investigation of deactivation mechanism by coke (2015) Appl. Catal. B, 176-177, pp. 1-10
dc.descriptionDalla Costa, B.O., Querini, C.A., Isobutane alkylation with butenes in gas phase (2010) Chem. Eng. J., 162, pp. 829-835
dc.descriptionKäldström, M., Kumar, N., Heikkilä, T., Murzin, D.Yu., Pillared H-MCM-36 mesoporous and H-MCM-22 microporous materials for conversion of levoglucosan: Influence of varying acidity (2011) Appl. Catal. A, 397, pp. 13-21
dc.descriptionMartinuzzi, I., Azizi, Y., Devaux, J.-F., Trejak, S., Zahraa, O., Leclerc, J.-P., Reaction mechanism for glycerol dehydration in the gas phase over a solid acid catalyst determined with on-line gas chromatography (2014) Chem. Eng. Sci., 116, pp. 118-127
dc.descriptionDecolatti, H.P., Dalla Costa, B.O., Querini, C.A., Dehydration of glycerol to acrolein using H-ZSM5 zeolite modified by alkali treatment with NaOH (2015) Microporous Mesoporous Mater., 204, pp. 180-189
dc.descriptionKim, Y.T., Jung, K.-D., Park, E.D., Gas-phase dehydration of glycerol over silica-alumina catalysts (2011) Appl. Catal. B, 107, pp. 177-187
dc.descriptionFoo, G.S., Wei, D., Sholl, D.S., Sievers, C., Role of Lewis and Brönsted acid sites in the dehydration of glycerol over niobia (2014) ACS Catal., 4, pp. 3180-3192
dc.description
dc.description
dc.languageen
dc.publisherAcademic Press Inc.
dc.relationJournal of Catalysis
dc.rightsfechado
dc.sourceScopus
dc.titleMww-type Catalysts For Gas Phase Glycerol Dehydration To Acrolein
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución