dc.date | 2016 | |
dc.date | 2016-06-03T20:12:51Z | |
dc.date | 2016-06-03T20:12:51Z | |
dc.date.accessioned | 2018-03-29T01:32:01Z | |
dc.date.available | 2018-03-29T01:32:01Z | |
dc.identifier | | |
dc.identifier | Food Research International. Elsevier Ltd, v. 79, p. 95 - 105, 2016. | |
dc.identifier | 9639969 | |
dc.identifier | 10.1016/j.foodres.2015.11.020 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84952637030&partnerID=40&md5=a101d25ec368280031fa7bfd6769b9ca | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/237914 | |
dc.identifier | 2-s2.0-84952637030 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1304575 | |
dc.description | The technical feasibility of obtaining β-carotene-incorporated phospholipid nanovesicles using non-purified soybean lecithins was studied. For this purpose, three lecithin-types were evaluated. Nanovesicles were characterized by average hydrodynamic diameter, particle size distribution, polydispersity index, ζ-potential, transmission electron microscopy, membrane microviscosity, small angle X-ray scattering and capacity of lipid peroxidation inhibition. In general, the β-carotene incorporation did not promote a significant increase on average hydrodynamic diameter, but vesicles produced from lecithins containing triglycerides showed lower polydispersity. The lecithin-type used to produce nanovesicles did not influence the β-carotene loading capacity, but significantly influenced the microviscosity of liposomal membrane and lipid peroxidation inhibition capacity. Non-enzymatically modified lecithin (containing or not triglycerides) showed similar efficiency and peroxidation inhibition capacity considering β-carotene incorporation. Therefore, low-cost non-purified lecithin can be employed for production of liposomal systems as an encapsulating and/or delivery system to be used in food products. © 2015 Elsevier Ltd. | |
dc.description | 79 | |
dc.description | | |
dc.description | 95 | |
dc.description | 105 | |
dc.description | Balachandran, B., Rao, A.V., Time-dependent uptake and antiperoxidative potential of lycopene in multilamellar liposomes (2003) Food Research International, 36, pp. 611-616 | |
dc.description | Balbino, T.A., Aoki, N.T., Gasperini, A.A.M., Oliveira, C.L.P., Azzoni, A.R., Cavalcanti, L.P., de la Torre, L.G., Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications (2013) Chemical Engineering Journal, 226, pp. 423-433 | |
dc.description | Balbino, T.A., Gasperini, A.A.M., Oliveira, C.L.P., Azzoni, A.R., Cavalcanti, L.P., de la Torre, L.G., Correlation of the physicochemical and structural properties of pDNA/cationic liposome complexes with their in vitro transfection (2012) Langmuir, 28, pp. 11535-11545 | |
dc.description | Bowstra, J.A., Gooris, G.S., Bras, W., Talsma, H., Small angle X-ray scattering: possibilities and limitations in characterization of vesicles (1993) Chemistry and Physics of Lipids, 64, pp. 83-98 | |
dc.description | Gonnet, M., Lethuaut, L., Boury, F., New trends in encapsulation of liposoluble vitamins (2010) Journal of Controlled Release, 146, pp. 276-290 | |
dc.description | Gruszecki, W.I., Strzayk, K., Carotenoids as modulators of lipid membrane physical properties (2005) Biochimica et Biophysica Acta, 1740, pp. 108-115 | |
dc.description | Guo, Z., Vikbjerg, A.F., Xu, X., Enzymatic modification of phospholipids for functional applications and human nutrition (2005) Biotechnology Advances, 23, pp. 203-259 | |
dc.description | Hejri, A., Khosravi, A., Gharanjig, K., Hejazi, M., Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method (2013) Food Chemistry, 141, pp. 117-123 | |
dc.description | Helganson, T., Awad, T.S., Kristbergsson, K., Decker, E.A., McClements, D.J., Weiss, J., Impact of surfactant properties on oxidative stability of β-carotene encapsulated within solid lipid nanoparticles (2009) Journal of Agricultural and Food Chemistry, 57, pp. 8033-8040 | |
dc.description | Hong, S.S., Kim, S.H., Lim, S.J., Effects of triglycerides on the hydrophobic drug loading capacity of saturated phosphatidylcholine-based liposomes (2015) International Journal of Pharmaceutics, 483, pp. 142-150 | |
dc.description | Hung, L.C., Basri, M., Tejo, B.A., Ismail, R., Nang, H.L.L., Hassan, H.A., May, C.Y., An improved method for the preparations of nanostructured lipid carriers containing heat-sensitive bioactives (2011) Colloids and Surfaces B: Biointerfaces, 87, pp. 180-186 | |
dc.description | Karaca, A.C., Nickerson, M., Low, N.H., Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: physicochemical properties and oxidative protection of encapsulated flaxseed oil (2013) Food Chemistry, 139, pp. 448-457 | |
dc.description | Lim, A.S.L., Griffin, C., Roos, Y.H., Stability and loss kinetics of lutein and β-carotene encapsulated in freeze-dried emulsions with layered interface and trehalose as glass former (2014) Food Research International, 62, pp. 403-409 | |
dc.description | Manca, M.L., Castangia, I., Zaru, M., Nácher, A., Valenti, D., Fernàndez-Busquets, X., Manconi, M., Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring (2015) Biomaterials, 71, pp. 100-109 | |
dc.description | McNulty, H.P., Byun, J., Lockwood, S.F., Jacob, R.F., Mason, R.P., Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis (2007) Biochimica et Biophysica Acta, 1768, pp. 167-174 | |
dc.description | Mertins, O., Sebben, M., Pohlmann, A.R., Silveira, N.P., Production of soybean phosphatidylcholine-chitosan nanovesicles by reverse phase evaporation: a step-by-step study (2005) Chemistry and Physics of Lipids, 138, pp. 29-37 | |
dc.description | Michelon, M., Borba, T.M., Rafael, R.S., Burkert, J.F.M., Burkert, C.A.V., Extraction of carotenoids from Phaffia rhodozyma: a comparison between different techniques of cell disruption (2012) Food Science and Biotechnology, 21, pp. 1-8 | |
dc.description | Mijajlovic, M., Wright, V., Zivkovic, V., Bi, J.X., Biggs, M.J., Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems (2013) Colloids and Surfaces B: Biointerfaces, 104, pp. 276-281 | |
dc.description | Moraes, M., Carvalho, J.M.P., Silva, C.R., Cho, S., Sola, M.R., Pinho, S.C., Liposomes encapsulating β-carotene produced by the proliposomes method: characterisation and shelf life of powders and phospholipid vesicles (2013) International Journal of Food Science and Technology, 48, pp. 274-282 | |
dc.description | Nakagaki, M., Komatsu, H., Handa, T., Effects of lysophosphatidylcholine micelle and phosphatidylcholine liposome on photoreduction of methylviologen (1986) Archives of Biochemistry and Biophysics, 249, pp. 388-396 | |
dc.description | Nongonierma, A.B., Abrlova, M., Fenelon, M.A., Kilcawley, K.N., Evaluation of two food grade proliposomes to encapsulate an extract of a commercial enzyme preparation by microfluidization (2009) Journal of Agricultural and Food Chemistry, 57, pp. 3291-3297 | |
dc.description | Palozza, P., Muzzalupo, R., Trompino, S., Valdannini, A., Picci, N., Solubilization and stabilization of β-carotene in niosomes: delivery to cultured cells (2006) Chemistry and Physics of Lipids, 139, pp. 32-42 | |
dc.description | Pandey, B.N., Mishra, K.P., Radiation induced oxidative damage modification by cholesterol in liposomal membrane (1999) Radiation Physics and Chemistry, 54, pp. 481-489 | |
dc.description | Ralston, E., Blumenthal, R., Weinstein, J.N., Sharrow, S.O., Henkart, P., Lysophosphatidylcholine in liposomal membranes enhanced permeability but little effect on transfer of a water-soluble fluorescent marker into human lymphocytes (1980) Biochimica et Biophysica Acta, 597, pp. 543-551 | |
dc.description | Rodriguez-Amaya, D.B., (2001) A Guide to Carotenoid Analysis in Foods, , ILSI Press, Washington | |
dc.description | Roohinejad, S., Oey, I., Wen, J., Lee, S.J., Everett, D.W., Burritt, D.J., Formulation of oil-in-water β-carotene microemulsions: effect of oil type and fatty acid chain length (2015) Food Chemistry, 174, pp. 270-278 | |
dc.description | Schnitzer, E., Pinchuk, I., Lichtenberg, D., Peroxidation of liposomal lipids (2007) European Biophysics Journal, 36, pp. 499-515 | |
dc.description | Shinitzky, M., Barenholz, Y., Fluidity parameters of lipid regions determined by fluorescence polarization (1978) Biochimica et Biophysica Acta, 515, pp. 367-394 | |
dc.description | Silva, H.D., Cerqueira, M.A., Souza, B.W.S., Ribeiro, C., Avides, M.C., Quintas, M.A.C., Vicente, A.A., Nanoemulsions of β-carotene using a high-energy emulsification-evaporation technique (2011) Journal of Food Engineering, 102, pp. 130-135 | |
dc.description | Socaciu, C., Bojarski, P., Aberle, L., Diehl, H.A., Different ways to insert carotenoids into liposomes affect structure and dynamics of the bilayer differently (2002) Biophysical Chemistry, 99, pp. 1-15 | |
dc.description | Socaciu, C., Lausch, C., Diehl, H.A., Carotenoids in DPPC vesicles: Membrane dynamics (1999) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, pp. 2289-2297 | |
dc.description | Tan, C., Xia, S., Xue, J., Xie, J., Feng, B., Zhang, X., Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure (2013) Journal of Agricultural and Food Chemistry, 61, pp. 8175-8184 | |
dc.description | Tan, C., Xue, J., Abbas, S., Feng, B., Zhang, X., Xia, S., Liposome as a delivery system for carotenoids: comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation (2014) Journal of Agricultural and Food Chemistry, 62, pp. 6726-6735 | |
dc.description | Tan, C., Xue, J., Lou, X., Abbas, S., Guan, Y., Feng, B., Xia, S., Liposomes as delivery systems for carotenoids: Comparative studies of loading ability, storage stability and in vitro release (2014) Food & Function, 5, pp. 1232-1240 | |
dc.description | Tan, C., Zhang, Y., Abbas, S., Feng, B., Zhang, X., Xia, S., Modulation of the carotenoid bioaccessibility through liposomal encapsulation (2014) Colloids and Surfaces B: Biointerfaces, 123, pp. 692-700 | |
dc.description | Théry, C., Clayton, A., Amigorena, S., Raposo, G., Isolation and characterization of exosomes from cell culture supernatants and biological fluids (2006) Current Protocols in Cell Biology, 3 (22), pp. 1-29 | |
dc.description | Thompson, A.K., Singh, H., Preparation of liposomes from milk fat globule membrane phospholipids using a microfluidizer (2006) Journal of Dairy Science, 89, pp. 410-419 | |
dc.description | Toniazzo, T., Berbel, I.F., Cho, S., Fávaro-Trindade, C., Moraes, I.C.F., Pinho, S.C., β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: physico-chemical stability and feasibility of application in yogurt (2014) LWT - Food Science and Technology, 59, pp. 1265-1273 | |
dc.description | van de Ven, M., Kattenberg, M., van Ginkel, G., Levine, Y.K., Study of the orientational ordering of carotenoids in lipid bilayers by resonance-Raman spectroscopy (1984) Biophysical Journal, 45, pp. 1203-1210 | |
dc.description | Woodall, A.A., Britton, G., Jackson, M.J., Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: Relationship between carotenoid structure and protective ability (1997) Biochimica et Biophysica Acta, 1336, pp. 575-586 | |
dc.description | Yokota, D., Moraes, M., Pinho, S.C., Characterization of lyophilized liposomes produced with non-purified soy lecithin: a case study of casein hydrolysate microencapsulation (2012) Brazilian Journal of Chemical Engineering, 29, pp. 325-335 | |
dc.description | Young, A.J., Lowe, G.M., Antioxidant and prooxidant properties of carotenoids (2001) Archives of Biochemistry and Biophysics, 385, pp. 20-27 | |
dc.description | Zômpero, R.H.F., López-Rubio, A., Pinho, S.C., Lagaron, J.M., de la Torre, L.G., Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes within electrospun fibers (2015) Colloids and Surfaces B: Biointerfaces, 134, pp. 475-482 | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | Elsevier Ltd | |
dc.relation | Food Research International | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Structural Characterization Of β-carotene-incorporated Nanovesicles Produced With Non-purified Phospholipids | |
dc.type | Artículos de revistas | |