dc.date | 2015 | |
dc.date | 2016-06-03T20:12:35Z | |
dc.date | 2016-06-03T20:12:35Z | |
dc.date.accessioned | 2018-03-29T01:31:47Z | |
dc.date.available | 2018-03-29T01:31:47Z | |
dc.identifier | | |
dc.identifier | Electronic Notes In Discrete Mathematics. Elsevier, v. 50, p. 397 - 402, 2015. | |
dc.identifier | 15710653 | |
dc.identifier | 10.1016/j.endm.2015.07.066 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84953399278&partnerID=40&md5=c6c275b77f353a906aa9b694ec1ddaa5 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/237858 | |
dc.identifier | 2-s2.0-84953399278 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1304519 | |
dc.description | We present an efficient algorithm to find a realization of a (full) n×. n squared Euclidean distance matrix in the smallest possible dimension. Most existing algorithms work in a given dimension: most of these can be transformed to an algorithm to find the minimum dimension, but gain a logarithmic factor of n in their worst-case running time. Our algorithm performs cubically in n (and linearly when the dimension is fixed, which happens in most applications). © 2015 Elsevier B.V. | |
dc.description | 50 | |
dc.description | | |
dc.description | 397 | |
dc.description | 402 | |
dc.description | ANR-10-BINF-03-08, ANR, Agence Nationale de la Recherche | |
dc.description | Dattorro, J., Convex Optimization and Euclidean Distance Geometry (2005), Meboo, Palo AltoLiberti, L., Lavor, C., Maculan, N., Mucherino, A., Euclidean distance geometry and applications (2014) SIAM Review, 56, pp. 3-69 | |
dc.description | Householder, A.S., Young, G., Discussion of a set of points in terms of their mutual distances (1938) Psychometrika, 3, pp. 19-22 | |
dc.description | Lavor, C., On generating instances for the molecular distance geometry problem (2006) Global optimization, pp. 405-414. , Springer US | |
dc.description | Moré, J.J., Wu, Z., Global continuation for distance geometry problems (1997) SIAM Journal on Optimization, 7, pp. 814-836 | |
dc.description | Dong, Q., Wu, Z., A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances (2002) Journal of Global Optimization, 22, pp. 365-375 | |
dc.description | Scheraga, H.A., Sippl, M.J., Solution of the embedding problem and decomposition of symmetric matrices (1985) Proceedings of the National Academy of Sciences, 82, pp. 2197-2201 | |
dc.description | Barvinok, A., Problems of Distance Geometry and convex properties of quadratic maps (1995) Discrete and Computational Geometry, 13, pp. 189-202 | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.relation | Electronic Notes in Discrete Mathematics | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | An Algorithm For Realizing Euclidean Distance Matrices | |
dc.type | Artículos de revistas | |