dc.date2015
dc.date2016-06-03T20:12:35Z
dc.date2016-06-03T20:12:35Z
dc.date.accessioned2018-03-29T01:31:47Z
dc.date.available2018-03-29T01:31:47Z
dc.identifier
dc.identifierElectronic Notes In Discrete Mathematics. Elsevier, v. 50, p. 397 - 402, 2015.
dc.identifier15710653
dc.identifier10.1016/j.endm.2015.07.066
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84953399278&partnerID=40&md5=c6c275b77f353a906aa9b694ec1ddaa5
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/237858
dc.identifier2-s2.0-84953399278
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1304519
dc.descriptionWe present an efficient algorithm to find a realization of a (full) n×. n squared Euclidean distance matrix in the smallest possible dimension. Most existing algorithms work in a given dimension: most of these can be transformed to an algorithm to find the minimum dimension, but gain a logarithmic factor of n in their worst-case running time. Our algorithm performs cubically in n (and linearly when the dimension is fixed, which happens in most applications). © 2015 Elsevier B.V.
dc.description50
dc.description
dc.description397
dc.description402
dc.descriptionANR-10-BINF-03-08, ANR, Agence Nationale de la Recherche
dc.descriptionDattorro, J., Convex Optimization and Euclidean Distance Geometry (2005), Meboo, Palo AltoLiberti, L., Lavor, C., Maculan, N., Mucherino, A., Euclidean distance geometry and applications (2014) SIAM Review, 56, pp. 3-69
dc.descriptionHouseholder, A.S., Young, G., Discussion of a set of points in terms of their mutual distances (1938) Psychometrika, 3, pp. 19-22
dc.descriptionLavor, C., On generating instances for the molecular distance geometry problem (2006) Global optimization, pp. 405-414. , Springer US
dc.descriptionMoré, J.J., Wu, Z., Global continuation for distance geometry problems (1997) SIAM Journal on Optimization, 7, pp. 814-836
dc.descriptionDong, Q., Wu, Z., A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances (2002) Journal of Global Optimization, 22, pp. 365-375
dc.descriptionScheraga, H.A., Sippl, M.J., Solution of the embedding problem and decomposition of symmetric matrices (1985) Proceedings of the National Academy of Sciences, 82, pp. 2197-2201
dc.descriptionBarvinok, A., Problems of Distance Geometry and convex properties of quadratic maps (1995) Discrete and Computational Geometry, 13, pp. 189-202
dc.description
dc.description
dc.languageen
dc.publisherElsevier
dc.relationElectronic Notes in Discrete Mathematics
dc.rightsfechado
dc.sourceScopus
dc.titleAn Algorithm For Realizing Euclidean Distance Matrices
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución