dc.date2016
dc.date2016-06-03T20:12:11Z
dc.date2016-06-03T20:12:11Z
dc.date.accessioned2018-03-29T01:31:25Z
dc.date.available2018-03-29T01:31:25Z
dc.identifier
dc.identifierCellulose. Springer Netherlands, v. 23, n. 1, p. 737 - 748, 2016.
dc.identifier9690239
dc.identifier10.1007/s10570-015-0843-4
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84955650599&partnerID=40&md5=74f9974d2b8b75a8c4cdad00a5d6fa5a
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/237771
dc.identifier2-s2.0-84955650599
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1304432
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThis work describes the synthesis of bilayer bacterial cellulose membranes (BCs) produced by Gluconacetobacter hansenii ATCC 23769 in culture media with different carbon sources (sugarcane molasses, syrup and fructose) as well as their retention capacity and sustained release of the antibacterial agent ceftriaxone. Scanning electronic microscopy analysis showed that BCs produced in all culture media exhibit a double layer and three-dimensional fiber network obtained in only one step. Elemental and thermogravimetric analyses, Fourier transform infrared spectroscopy and X-ray diffraction show that the BC membranes are composed of pure cellulose. In particular, the BC produced in sugarcane molasses medium presented a three-dimensional network structure of the bilayer with high-density fiber entangling, which was responsible for the largest holding capacity and sustained release of the antibiotic ceftriaxone in relation to Staphylococcus aureus bacterial strains. This behavior shows the potential of applying such BC membranes in wound dressings as a sustained support to release different antibiotics to treat skin infections. © 2015, Springer Science+Business Media Dordrecht.
dc.description23
dc.description1
dc.description737
dc.description748
dc.descriptionCNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.description2012/08230-2, FAPESP, Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionAbeer, M.M., Amin, M.C.I.M., Martin, C., A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects (2014) J Pharm Pharmacol, 66, pp. 1047-1061. , COI: 1:CAS:528:DC%2BC2cXhtFeitL7F
dc.descriptionArora, P., Mukherjee, B., Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethyl ammonium salt (2002) J Pharm Sci, 91, pp. 2076-2089. , COI: 1:CAS:528:DC%2BD38XmsVSgsLg%3D
dc.descriptionBäckdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P., Mechanical properties of bacterial cellulose and interactions with smooth muscle cells (2006) Biomaterials, 27, pp. 2141-2149
dc.descriptionBarud, H.S., Regiani, T., Marques, R.F.C., Lustri, W.R., Messaddeq, Y., Ribeiro, S.J.L., Antimicrobial bacterial cellulose-silver nanoparticles composite membranes (2011) J Nanomater
dc.descriptionBrown, R.M., Jr., Cellulose structure and biosynthesis: what is on the store for the 21st Century? (2004) J Polym Sci A, 1 (42), pp. 487-495
dc.descriptionChang, W.S., Chen, H.H., Physical properties of bacterial cellulose composites for wound dressings (2014) Food Hydrocoll
dc.descriptionChawla, P.R., Bajaj, I.B., Survase, S.A., Singhal, R.S., Microbial cellulose: fermentative production and applications (2009) Food Technol Biotechnol, 47 (2), pp. 107-124. , COI: 1:CAS:528:DC%2BD1MXptVeqs7c%3D
dc.descriptionPerformance standards for antimicrobial susceptibility testing
dc.descriptionTwenty-Fourth Informational Supplement (2014) CLSI document M100-S24, , Clinical and Laboratory Standards Institute, Wayne
dc.descriptionEl-Saied, A., El-Diwani, A.I., Basta, A.H., Atwa, N.A., El-Ghawas, D.E., Production and characterization of economical bacterial cellulose (2008) BioResources, 3, pp. 1196-1217. , COI: 1:CAS:528:DC%2BD1MXmtVOitbs%3D
dc.descriptionEl-Sousi, S., Nácher, A., Mura, C., Catalán-Latorre, A., Merino, V., Merino-Sanjuán, M., Díez-Sales, O., Hydroxypropylmethylcellulose films for the ophthalmic delivery of diclofenac sodium (2013) J Pharm Pharmacol, 65, pp. 193-200. , COI: 1:CAS:528:DC%2BC3sXhslGitb0%3D
dc.descriptionFang, J.Y., Sung, K.C., Lin, H.H., Fang, C.L., Transdermal iontophoretic delivery of diclofenac sodium from various polymer formulations: in vitro and in vivo studies (1999) Int J Pharm, 178, pp. 83-92. , COI: 1:CAS:528:DyaK1MXlvVegug%3D%3D
dc.descriptionFu, L., Zhang, J., Yang, G., Present status and applications of bacterial cellulose-based materials for skin tissue repair (2013) Carbohydr Polym, 92, pp. 1432-1442. , COI: 1:CAS:528:DC%2BC3sXisVSqsbw%3D
dc.descriptionHalib, N., Amin, M.C.I.M., Ahmad, I., Hashim, Z.M., Jamal, N., Swelling of bacteria cellulose-acrylic acid hydrogels: sensitivity towards external stimuli (2009) Sains Malay, 38, pp. 785-791. , COI: 1:CAS:528:DC%2BD1MXhsVWgsr3K
dc.descriptionHalib, N., Amin, M.C.I.M., Ahmad, I., Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose (2012) Sains Malays, 41, pp. 205-211. , COI: 1:CAS:528:DC%2BC38XktVKnsrg%3D
dc.descriptionHashimoto, A., Shimono, K., Horikawa, Y., Ichikawa, T., Wada, M., Imai, T., Sugiyama, J., Extraction of cellulose-synthesizing activity of Gluconacetobacter xylinus by alkylmalto side (2011) Carbohydr Res, 346, pp. 2760-2768. , COI: 1:CAS:528:DC%2BC3MXhsFWjtrfM
dc.descriptionJung, R., Kim, Y., Kim, H.S., Jin, H.J., Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles (2009) J Biomater Sci Polym E, 20, pp. 311-324. , COI: 1:CAS:528:DC%2BD1MXjvVSkt7g%3D
dc.descriptionJung, H.I., Production and characterization of cellulose by Acetobacter sp V6 using a costeffective molasses-corn steep liquor medium (2010) Appl Biochem Biotechnol, 162 (2), pp. 486-497. , COI: 1:CAS:528:DC%2BC3cXmvFCms7k%3D
dc.descriptionKeshk, S.M.A.S., Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus (2014) Carbohydr Polym, 99, pp. 98-100. , COI: 1:CAS:528:DC%2BC3sXhvFartrfN
dc.descriptionKlemm, D., Heublein, B., Fink, H.P., Bohn, A., Cellulose: fascinating biopolymer and sustainable raw material (2005) Angew Chem Int Edit, 44, pp. 3358-3393. , COI: 1:CAS:528:DC%2BD2MXlsV2jtbY%3D
dc.descriptionKlemm, D., Schumann, D., Kramer, F., Heßler, N., Hornung, M., Schmauder, H.P., Marsch, S., Nanocellulose as innovative polymers in research and application (2006) Adv Polym Sci, 205, pp. 49-96. , COI: 1:CAS:528:DC%2BD28XhtlejsrrP
dc.descriptionKukharenko, O., Bardeau, J.F., Zaets, I., Ovcharenko, L., Tarasyuk, O., Porhyn, S., Mischenko, I., Kozyrovska, N., Promising low cost antimicrobial composite material based on bacterial cellulose and polyhexamethylene guanidine hydrochloride (2014) Eur Polym J, 60, pp. 247-254. , COI: 1:CAS:528:DC%2BC2cXhs1ehs7rO
dc.descriptionKurosumi, A., Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693 (2009) Carbohydr Polym, 76, pp. 333-335. , COI: 1:CAS:528:DC%2BD1MXhs1OhtL4%3D
dc.descriptionLee, S., Kim, S.K.Y., Lee, D.Y., Park, K., Kumar, T.S., Chae, S.Y., Byun, Y., Cationic analog of deoxycholate as an oral delivery carrier for ceftriaxone (2005) J Pharm Sci, 94, pp. 2541-2548. , COI: 1:CAS:528:DC%2BD2MXht1Ogur7O
dc.descriptionLin, S.-P., Calvar, I.L., Catchmark, J.M., Liu, J.-R., Demirci, A., Chem, K.-C., Biosynthesis, production and applications of bacterial cellulose (2013) Cellulose, 20, pp. 2191-2219. , COI: 1:CAS:528:DC%2BC3sXhsVOlur%2FN
dc.descriptionLustri, W.R., Amaral, A.C., Lazarini, S.C., Aquino, R., Processo de obtenção e utilização de membrane de cellulose bacteriana em bicamada como biocurativo de liberação sustentada de fármacos e suporte para crescimento celular. BR Patent 10 2013 0331073 5 (2013) INPI, 200, pp. 1-2
dc.descriptionMarchessault, R.G., Sundararajan, P.R., Cellulose (1983) The Polysaccharides, pp. 11-95. , Aspinall GO, (ed), Academic Press, New York
dc.descriptionMikkelsen, D., Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524 (2009) J Appl Microbiol, 109, pp. 576-583
dc.descriptionMoritz, S., Wiegand, C., Wesarg, F., Hessler, N., Müller, F.A., Kralisch, D., Hipler, U.C., Fischer, D., Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine (2014) Int J Pharm, 471, pp. 45-55. , COI: 1:CAS:528:DC%2BC2cXhtVemu7jP
dc.descriptionOshima, T., Taguchi, S., Ohe, K., Baba, Y., Phosphorylated bacterial cellulose for adsorption of proteins (2011) Carbohydr Polym, 83 (2), pp. 953-958. , COI: 1:CAS:528:DC%2BC3cXhsVaqsbnI
dc.descriptionPetersen, N., Gatenholm, P., Bacterial cellulose-based materials and medical devices: current state and perspectives (2011) Appl Microbiol Biotechnol, 91 (5), pp. 1277-1286. , COI: 1:CAS:528:DC%2BC3MXhtVSitbrE
dc.descriptionPinto, R.J.B., Marques, P.A.A.P., Neto, C.P., Trindade, T., Daina, S., Sadocco, P., Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers (2009) Acta Biomaterialia, 5, pp. 2279-2289. , COI: 1:CAS:528:DC%2BD1MXosVags7g%3D
dc.descriptionRuka, D.R., Simon, G.P., Dean, K.M., Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose (2012) Carbohydr Polym, 89, pp. 613-622. , COI: 1:CAS:528:DC%2BC38XlsFSqur8%3D
dc.descriptionSegal, L., Creely, J.J., Jr, M.A.E., Conrad, C.M., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer (1959) Text Res J, 29, pp. 786-794. , COI: 1:CAS:528:DyaF3cXjvFCq
dc.descriptionShah, N., Ha, J.H., Park, J.K., Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK (2010) Biotechnol Bioprocess Eng, 15, pp. 110-118. , COI: 1:CAS:528:DC%2BC3cXjsFGju7w%3D
dc.descriptionShah, N., Ul-Islam, M., Khattak, W.A., Park, J.K., Overview of bacterial cellulose composites: a multipurpose advanced material (2013) Carbohydr Polym, 98, pp. 1585-1598. , COI: 1:CAS:528:DC%2BC3sXhsVymsrzK
dc.descriptionSilva, N.H.C.S., Rodrigues, A.F., Almeida, I.F., Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies (2014) Carbohydr Polym, 106, pp. 264-269. , COI: 1:CAS:528:DC%2BC2cXmtVCksb4%3D
dc.descriptionSiqueira, G., Bras, J., Dufresne, A., Cellulose whiskers vs. microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites (2009) Biomacromolecules, 10 (2), pp. 425-432. , COI: 1:CAS:528:DC%2BD1cXhsFCrt73K
dc.descriptionSiqueira, G., Bras, J., Dufresne, A., Cellulosic bionanocomposites: a review of preparation, properties and applications (2010) Polymers, 2, pp. 728-765. , COI: 1:CAS:528:DC%2BC3MXhvFyktbY%3D
dc.descriptionStumpf, T.R., Pértile, R.A.N., Rambo, C.R., Porto, L.M., Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes (2013) Mater Sci Eng, C, 33, pp. 4739-4745. , COI: 1:CAS:528:DC%2BC3sXht1Oiur%2FK
dc.descriptionTang, W., Jia, S., Jia, Y., Yang, H., The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane (2010) World J Microbiol Biotechnol, 26, pp. 125-131. , COI: 1:CAS:528:DC%2BD1MXhsFams73E
dc.descriptionTrovatti, E., Serafin, L.S., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory (2011) Carbohydr Polym, 86, pp. 1417-1420. , COI: 1:CAS:528:DC%2BC3MXps1ensr4%3D
dc.descriptionUl-Islam, M., Khan, T., Park, J.K., Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification (2012) Carbohydr Polym, 88, pp. 596-603. , COI: 1:CAS:528:DC%2BC38XjtFOmurc%3D
dc.descriptionUl-Islam, M., Khattak, W.A., Kang, M., Kim, S.M., Khan, T., Park, J.K., Effect of post-synthetic processing conditions on structural variations and applications of bacterial cellulose (2013) Cellulose, 20, pp. 253-263. , COI: 1:CAS:528:DC%2BC3sXpt12rsQ%3D%3D
dc.descriptionWada, M., Sugiyama, J., Okano, T., Native celluloses on the basis of two crystalline phase (Iα/Iβ) system (1993) J Appl Polym Sci, 49, pp. 1491-1496. , COI: 1:CAS:528:DyaK3sXlvVeisr8%3D
dc.descriptionWang, J.H., Gao, C., Zhang, Y.S., Wan, Y.Z., Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial (2010) Mater Sci Eng, C, 30, pp. 214-218
dc.descriptionWei, B., Yanga, G., Hong, F., Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties (2011) Carbohydr Polym, 84, pp. 533-538. , COI: 1:CAS:528:DC%2BC3MXhtVeisr4%3D
dc.descriptionWu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wuc, Z., Chen, X., Guo, S., In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing (2014) Carbohydr Polym, 102, pp. 762-771. , COI: 1:CAS:528:DC%2BC3sXhvVOhsLfN
dc.descriptionYang, G., Xie, J., Honga, F., Cao, Z., Yang, X., Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose (2012) Carbohydr Polym, 87, pp. 839-845. , COI: 1:CAS:528:DC%2BC3MXhtlemsLbL
dc.description
dc.description
dc.languageen
dc.publisherSpringer Netherlands
dc.relationCellulose
dc.rightsfechado
dc.sourceScopus
dc.titleCharacterization Of Bilayer Bacterial Cellulose Membranes With Different Fiber Densities: A Promising System For Controlled Release Of The Antibiotic Ceftriaxone
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución